Optimizing electrochemically active microorganisms as a key player in the bioelectrochemical system: Identification methods and pathways to large-scale implementation

The rapid global economic growth driven by industrialization and population expansion has resulted in significant issues, including reliance on fossil fuels, energy scarcity, water crises, and environmental emissions. To address these issues, bioelectrochemical systems (BES) have emerged as a dual-p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-03, Vol.914, p.169766-169766, Article 169766
Hauptverfasser: Nguyen, Ha T.T., Le, Giang T.H., Park, Sung-Gwan, Jadhav, Dipak A., Le, Trang T.Q., Kim, Hyunsu, Vinayak, Vandana, Lee, Gihan, Yoo, Keunje, Song, Young-Chae, Chae, Kyu-Jung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The rapid global economic growth driven by industrialization and population expansion has resulted in significant issues, including reliance on fossil fuels, energy scarcity, water crises, and environmental emissions. To address these issues, bioelectrochemical systems (BES) have emerged as a dual-purpose solution, harnessing electrochemical processes and the capabilities of electrochemically active microorganisms (EAM) to simultaneously recover energy and treat wastewater. This review examines critical performance factors in BES, including inoculum selection, pretreatment methods, electrodes, and operational conditions. Further, authors explore innovative approaches to suppress methanogens and simultaneously enhance the EAM in mixed cultures. Additionally, advanced techniques for detecting EAM are discussed. The rapid detection of EAM facilitates the selection of suitable inoculum sources and optimization of enrichment strategies in BESs. This optimization is essential for facilitating the successful scaling up of BES applications, contributing substantially to the realization of clean energy and sustainable wastewater treatment. This analysis introduces a novel viewpoint by amalgamating contemporary research on the selective enrichment of EAM in mixed cultures. It encompasses identification and detection techniques, along with methodologies tailored for the selective enrichment of EAM, geared explicitly toward upscaling applications in BES. [Display omitted] •Electrogens are crucial for electron transfer and electrochemical reactions in BES.•Mixed inoculum pretreatment to regulate methanogenesis/electrogenesis competition•Electrogen enrichment/methanogen suppression is building blocks for BES upscaling.•Heat pretreatment of inoculum and periodic chemical dosing for scalable use of BES•Ease in detection/identification of electrogens for selecting suitable inoculum
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2023.169766