Physiological and biochemical effects of biochar nanoparticles on spinach exposed to salinity and drought stresses

The utilization of nanobiochar in agricultural practices has garnered substantial interest owing to its promising potential. Its nano-size particles possess an enhanced ability to infiltrate plant cells, potentially instigating biochemical and physiological responses that augment stress tolerance. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2024-02, Vol.31 (9), p.14103-14122
Hauptverfasser: Rasheed, Aimun, Anwar, Sumera, Shafiq, Fahad, Zaib-un-Nisa, Khan, Shahbaz, Ashraf, Muhammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14122
container_issue 9
container_start_page 14103
container_title Environmental science and pollution research international
container_volume 31
creator Rasheed, Aimun
Anwar, Sumera
Shafiq, Fahad
Zaib-un-Nisa
Khan, Shahbaz
Ashraf, Muhammad
description The utilization of nanobiochar in agricultural practices has garnered substantial interest owing to its promising potential. Its nano-size particles possess an enhanced ability to infiltrate plant cells, potentially instigating biochemical and physiological responses that augment stress tolerance. In our study, we aimed to assess the impact and extent of exogenously applied nanobiochar on the growth dynamics and antioxidative responses in Spinacia oleracea L. (spinach) plants subjected to salt stress (50 mM NaCl) and drought stress (maintained at 60% field capacity) compared with respective controls (0 mM NaCl and 100% field capacity). Following a 15-day exposure to stress conditions, nanobiochar solution (at concentrations of 0, 1, 3, and 5% w/v) was sprayed on spinach plants at weekly intervals (at 14, 21, and 28 days after sowing). The foliar application of nanobiochar markedly improved biomass, net assimilation rate, leaf area, and various other growth parameters under drought and salinity stress conditions. Notably, the application of 3% nanobiochar caused the most significant enhancement in growth traits, photosynthetic pigments, and nutrient content, indicating its efficiency in directly supplying nutrients to the foliage. Furthermore, under drought stress conditions, the application of 3% nanobiochar elicited a notable 62% increase in catalase activity, a two-fold rise in peroxidase activity, and a 128% increase in superoxide dismutase activity compared to the control (without nanobiochar). Additionally, nanobiochar application enhanced membrane stability, evidenced by reduced lipid peroxidation and electrolyte leakage. The foliar application of 3% nanobiochar was found as a promising strategy to significantly enhance spinach growth parameters, nutrient assimilation, and antioxidative defense mechanisms, particularly under conditions of drought and salinity stress. Graphical abstract
doi_str_mv 10.1007/s11356-024-31953-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2918510067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929319254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-886f9554cec21527093387ded8793445d1d39659c22d07df6e717467c3e69baa3</originalsourceid><addsrcrecordid>eNp9kUuPFCEURonROOPoH3BhSNy4KeVRQLE0E1_JJLrQNaHhVjeTaii5VYn972W6xkdcuOJxDx839xDynLPXnDHzBjmXSndM9J3kVsnOPCCXXPO-M721D__aX5AniLeMCWaFeUwu5CAMM5pdkvrlcMJUprJPwU_U50h3qYQDHM9nGEcIC9Iybte-0uxzmX1dUpigFTLFOWUfDhR-zAUh0qVQ9FPKaTmd82It6_6wUFwqIAI-JY9GPyE8u1-vyLf3775ef-xuPn_4dP32pgvSqKUbBj1apfoAQXDV-rVSDiZCHIyVfa8ij9JqZYMQkZk4ajDc9NoECdruvJdX5NWWO9fyfQVc3DFhgGnyGcqKTlg-qDZIbRr68h_0tqw1t-4aJWybrlB9o8RGhVoQK4xuruno68lx5u6MuM2Ia0bc2Yi7i35xH73ujhB_P_mloAFyA7CV8h7qn7__E_sTg_6XIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929319254</pqid></control><display><type>article</type><title>Physiological and biochemical effects of biochar nanoparticles on spinach exposed to salinity and drought stresses</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Rasheed, Aimun ; Anwar, Sumera ; Shafiq, Fahad ; Zaib-un-Nisa ; Khan, Shahbaz ; Ashraf, Muhammad</creator><creatorcontrib>Rasheed, Aimun ; Anwar, Sumera ; Shafiq, Fahad ; Zaib-un-Nisa ; Khan, Shahbaz ; Ashraf, Muhammad</creatorcontrib><description>The utilization of nanobiochar in agricultural practices has garnered substantial interest owing to its promising potential. Its nano-size particles possess an enhanced ability to infiltrate plant cells, potentially instigating biochemical and physiological responses that augment stress tolerance. In our study, we aimed to assess the impact and extent of exogenously applied nanobiochar on the growth dynamics and antioxidative responses in Spinacia oleracea L. (spinach) plants subjected to salt stress (50 mM NaCl) and drought stress (maintained at 60% field capacity) compared with respective controls (0 mM NaCl and 100% field capacity). Following a 15-day exposure to stress conditions, nanobiochar solution (at concentrations of 0, 1, 3, and 5% w/v) was sprayed on spinach plants at weekly intervals (at 14, 21, and 28 days after sowing). The foliar application of nanobiochar markedly improved biomass, net assimilation rate, leaf area, and various other growth parameters under drought and salinity stress conditions. Notably, the application of 3% nanobiochar caused the most significant enhancement in growth traits, photosynthetic pigments, and nutrient content, indicating its efficiency in directly supplying nutrients to the foliage. Furthermore, under drought stress conditions, the application of 3% nanobiochar elicited a notable 62% increase in catalase activity, a two-fold rise in peroxidase activity, and a 128% increase in superoxide dismutase activity compared to the control (without nanobiochar). Additionally, nanobiochar application enhanced membrane stability, evidenced by reduced lipid peroxidation and electrolyte leakage. The foliar application of 3% nanobiochar was found as a promising strategy to significantly enhance spinach growth parameters, nutrient assimilation, and antioxidative defense mechanisms, particularly under conditions of drought and salinity stress. Graphical abstract</description><identifier>ISSN: 1614-7499</identifier><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-024-31953-7</identifier><identifier>PMID: 38270760</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agricultural practices ; Antioxidants ; Aquatic Pollution ; Assimilation ; Atmospheric Protection/Air Quality Control/Air Pollution ; Biological assimilation ; Catalase ; Charcoal ; Drought ; Droughts ; Earth and Environmental Science ; Ecotoxicology ; Electrolyte leakage ; Electrolytic cells ; Environment ; Environmental Chemistry ; Environmental Health ; Field capacity ; Foliage ; Foliar applications ; Leaf area ; Lipid peroxidation ; Lipids ; Nanoparticles ; Nutrient content ; Nutrient uptake ; Nutrients ; Parameters ; Peroxidase ; Peroxidation ; Photosynthetic pigments ; Physiological effects ; Physiological responses ; Physiology ; Plant cells ; Plants (botany) ; Research Article ; Salinity ; Salinity effects ; Sodium Chloride ; Spinach ; Spinacia oleracea ; Superoxide dismutase ; Vegetables ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2024-02, Vol.31 (9), p.14103-14122</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-886f9554cec21527093387ded8793445d1d39659c22d07df6e717467c3e69baa3</citedby><cites>FETCH-LOGICAL-c375t-886f9554cec21527093387ded8793445d1d39659c22d07df6e717467c3e69baa3</cites><orcidid>0000-0001-8224-7370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-024-31953-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-024-31953-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38270760$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rasheed, Aimun</creatorcontrib><creatorcontrib>Anwar, Sumera</creatorcontrib><creatorcontrib>Shafiq, Fahad</creatorcontrib><creatorcontrib>Zaib-un-Nisa</creatorcontrib><creatorcontrib>Khan, Shahbaz</creatorcontrib><creatorcontrib>Ashraf, Muhammad</creatorcontrib><title>Physiological and biochemical effects of biochar nanoparticles on spinach exposed to salinity and drought stresses</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>The utilization of nanobiochar in agricultural practices has garnered substantial interest owing to its promising potential. Its nano-size particles possess an enhanced ability to infiltrate plant cells, potentially instigating biochemical and physiological responses that augment stress tolerance. In our study, we aimed to assess the impact and extent of exogenously applied nanobiochar on the growth dynamics and antioxidative responses in Spinacia oleracea L. (spinach) plants subjected to salt stress (50 mM NaCl) and drought stress (maintained at 60% field capacity) compared with respective controls (0 mM NaCl and 100% field capacity). Following a 15-day exposure to stress conditions, nanobiochar solution (at concentrations of 0, 1, 3, and 5% w/v) was sprayed on spinach plants at weekly intervals (at 14, 21, and 28 days after sowing). The foliar application of nanobiochar markedly improved biomass, net assimilation rate, leaf area, and various other growth parameters under drought and salinity stress conditions. Notably, the application of 3% nanobiochar caused the most significant enhancement in growth traits, photosynthetic pigments, and nutrient content, indicating its efficiency in directly supplying nutrients to the foliage. Furthermore, under drought stress conditions, the application of 3% nanobiochar elicited a notable 62% increase in catalase activity, a two-fold rise in peroxidase activity, and a 128% increase in superoxide dismutase activity compared to the control (without nanobiochar). Additionally, nanobiochar application enhanced membrane stability, evidenced by reduced lipid peroxidation and electrolyte leakage. The foliar application of 3% nanobiochar was found as a promising strategy to significantly enhance spinach growth parameters, nutrient assimilation, and antioxidative defense mechanisms, particularly under conditions of drought and salinity stress. Graphical abstract</description><subject>Agricultural practices</subject><subject>Antioxidants</subject><subject>Aquatic Pollution</subject><subject>Assimilation</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Biological assimilation</subject><subject>Catalase</subject><subject>Charcoal</subject><subject>Drought</subject><subject>Droughts</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Electrolyte leakage</subject><subject>Electrolytic cells</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Field capacity</subject><subject>Foliage</subject><subject>Foliar applications</subject><subject>Leaf area</subject><subject>Lipid peroxidation</subject><subject>Lipids</subject><subject>Nanoparticles</subject><subject>Nutrient content</subject><subject>Nutrient uptake</subject><subject>Nutrients</subject><subject>Parameters</subject><subject>Peroxidase</subject><subject>Peroxidation</subject><subject>Photosynthetic pigments</subject><subject>Physiological effects</subject><subject>Physiological responses</subject><subject>Physiology</subject><subject>Plant cells</subject><subject>Plants (botany)</subject><subject>Research Article</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Sodium Chloride</subject><subject>Spinach</subject><subject>Spinacia oleracea</subject><subject>Superoxide dismutase</subject><subject>Vegetables</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>1614-7499</issn><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUuPFCEURonROOPoH3BhSNy4KeVRQLE0E1_JJLrQNaHhVjeTaii5VYn972W6xkdcuOJxDx839xDynLPXnDHzBjmXSndM9J3kVsnOPCCXXPO-M721D__aX5AniLeMCWaFeUwu5CAMM5pdkvrlcMJUprJPwU_U50h3qYQDHM9nGEcIC9Iybte-0uxzmX1dUpigFTLFOWUfDhR-zAUh0qVQ9FPKaTmd82It6_6wUFwqIAI-JY9GPyE8u1-vyLf3775ef-xuPn_4dP32pgvSqKUbBj1apfoAQXDV-rVSDiZCHIyVfa8ij9JqZYMQkZk4ajDc9NoECdruvJdX5NWWO9fyfQVc3DFhgGnyGcqKTlg-qDZIbRr68h_0tqw1t-4aJWybrlB9o8RGhVoQK4xuruno68lx5u6MuM2Ia0bc2Yi7i35xH73ujhB_P_mloAFyA7CV8h7qn7__E_sTg_6XIg</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Rasheed, Aimun</creator><creator>Anwar, Sumera</creator><creator>Shafiq, Fahad</creator><creator>Zaib-un-Nisa</creator><creator>Khan, Shahbaz</creator><creator>Ashraf, Muhammad</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8224-7370</orcidid></search><sort><creationdate>20240201</creationdate><title>Physiological and biochemical effects of biochar nanoparticles on spinach exposed to salinity and drought stresses</title><author>Rasheed, Aimun ; Anwar, Sumera ; Shafiq, Fahad ; Zaib-un-Nisa ; Khan, Shahbaz ; Ashraf, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-886f9554cec21527093387ded8793445d1d39659c22d07df6e717467c3e69baa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural practices</topic><topic>Antioxidants</topic><topic>Aquatic Pollution</topic><topic>Assimilation</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Biological assimilation</topic><topic>Catalase</topic><topic>Charcoal</topic><topic>Drought</topic><topic>Droughts</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Electrolyte leakage</topic><topic>Electrolytic cells</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Field capacity</topic><topic>Foliage</topic><topic>Foliar applications</topic><topic>Leaf area</topic><topic>Lipid peroxidation</topic><topic>Lipids</topic><topic>Nanoparticles</topic><topic>Nutrient content</topic><topic>Nutrient uptake</topic><topic>Nutrients</topic><topic>Parameters</topic><topic>Peroxidase</topic><topic>Peroxidation</topic><topic>Photosynthetic pigments</topic><topic>Physiological effects</topic><topic>Physiological responses</topic><topic>Physiology</topic><topic>Plant cells</topic><topic>Plants (botany)</topic><topic>Research Article</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Sodium Chloride</topic><topic>Spinach</topic><topic>Spinacia oleracea</topic><topic>Superoxide dismutase</topic><topic>Vegetables</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rasheed, Aimun</creatorcontrib><creatorcontrib>Anwar, Sumera</creatorcontrib><creatorcontrib>Shafiq, Fahad</creatorcontrib><creatorcontrib>Zaib-un-Nisa</creatorcontrib><creatorcontrib>Khan, Shahbaz</creatorcontrib><creatorcontrib>Ashraf, Muhammad</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rasheed, Aimun</au><au>Anwar, Sumera</au><au>Shafiq, Fahad</au><au>Zaib-un-Nisa</au><au>Khan, Shahbaz</au><au>Ashraf, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physiological and biochemical effects of biochar nanoparticles on spinach exposed to salinity and drought stresses</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>31</volume><issue>9</issue><spage>14103</spage><epage>14122</epage><pages>14103-14122</pages><issn>1614-7499</issn><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>The utilization of nanobiochar in agricultural practices has garnered substantial interest owing to its promising potential. Its nano-size particles possess an enhanced ability to infiltrate plant cells, potentially instigating biochemical and physiological responses that augment stress tolerance. In our study, we aimed to assess the impact and extent of exogenously applied nanobiochar on the growth dynamics and antioxidative responses in Spinacia oleracea L. (spinach) plants subjected to salt stress (50 mM NaCl) and drought stress (maintained at 60% field capacity) compared with respective controls (0 mM NaCl and 100% field capacity). Following a 15-day exposure to stress conditions, nanobiochar solution (at concentrations of 0, 1, 3, and 5% w/v) was sprayed on spinach plants at weekly intervals (at 14, 21, and 28 days after sowing). The foliar application of nanobiochar markedly improved biomass, net assimilation rate, leaf area, and various other growth parameters under drought and salinity stress conditions. Notably, the application of 3% nanobiochar caused the most significant enhancement in growth traits, photosynthetic pigments, and nutrient content, indicating its efficiency in directly supplying nutrients to the foliage. Furthermore, under drought stress conditions, the application of 3% nanobiochar elicited a notable 62% increase in catalase activity, a two-fold rise in peroxidase activity, and a 128% increase in superoxide dismutase activity compared to the control (without nanobiochar). Additionally, nanobiochar application enhanced membrane stability, evidenced by reduced lipid peroxidation and electrolyte leakage. The foliar application of 3% nanobiochar was found as a promising strategy to significantly enhance spinach growth parameters, nutrient assimilation, and antioxidative defense mechanisms, particularly under conditions of drought and salinity stress. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38270760</pmid><doi>10.1007/s11356-024-31953-7</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-8224-7370</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-7499
ispartof Environmental science and pollution research international, 2024-02, Vol.31 (9), p.14103-14122
issn 1614-7499
0944-1344
1614-7499
language eng
recordid cdi_proquest_miscellaneous_2918510067
source MEDLINE; SpringerNature Journals
subjects Agricultural practices
Antioxidants
Aquatic Pollution
Assimilation
Atmospheric Protection/Air Quality Control/Air Pollution
Biological assimilation
Catalase
Charcoal
Drought
Droughts
Earth and Environmental Science
Ecotoxicology
Electrolyte leakage
Electrolytic cells
Environment
Environmental Chemistry
Environmental Health
Field capacity
Foliage
Foliar applications
Leaf area
Lipid peroxidation
Lipids
Nanoparticles
Nutrient content
Nutrient uptake
Nutrients
Parameters
Peroxidase
Peroxidation
Photosynthetic pigments
Physiological effects
Physiological responses
Physiology
Plant cells
Plants (botany)
Research Article
Salinity
Salinity effects
Sodium Chloride
Spinach
Spinacia oleracea
Superoxide dismutase
Vegetables
Waste Water Technology
Water Management
Water Pollution Control
title Physiological and biochemical effects of biochar nanoparticles on spinach exposed to salinity and drought stresses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A02%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physiological%20and%20biochemical%20effects%20of%20biochar%20nanoparticles%20on%20spinach%20exposed%20to%20salinity%20and%20drought%20stresses&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Rasheed,%20Aimun&rft.date=2024-02-01&rft.volume=31&rft.issue=9&rft.spage=14103&rft.epage=14122&rft.pages=14103-14122&rft.issn=1614-7499&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-024-31953-7&rft_dat=%3Cproquest_cross%3E2929319254%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2929319254&rft_id=info:pmid/38270760&rfr_iscdi=true