Operando Mobile Catalysis for Reverse Water Gas Shift Reaction
Metal atoms on the support serve as active sites for many heterogeneous catalysts. However, the active metal sites on the support are conventionally described as static, and the intermediates adsorbed on the support far away from the active metal sites cannot be transformed. Herein, we report the fi...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2024-03, Vol.63 (12), p.e202318747-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Metal atoms on the support serve as active sites for many heterogeneous catalysts. However, the active metal sites on the support are conventionally described as static, and the intermediates adsorbed on the support far away from the active metal sites cannot be transformed. Herein, we report the first example of operando mobile catalysis to promote catalytic efficiency by enhancing the collision probability between active sites and reactants or reaction intermediates. Specifically, ligand‐coordinated Pt single atoms (isolated MeCpPt‐ species) are bonded on CeO2 and transformed into mobile MeCpPt(H)CO complexes during the reverse water gas shift reaction for operando mobile catalysis. This strategy enables the conversion of inert carbonate intermediates on the CeO2 support. A turnover frequency (TOF) of 6358 mol CO2 molPt−1 ⋅ h−1 and 99 % CO selectivity at 300 °C is obtained for reverse water gas shift reaction, dramatically higher than those of Pt catalysts reported in the literature. Operando mobile catalysis presents a promising strategy for designing high‐efficiency heterogeneous catalysts for various chemical reactions and applications.
Operando mobile catalysis enables the formation of mobile metal species during the reaction and enhances the catalytic efficiency by increasing the collision probability with the intermediates. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.202318747 |