Acoustic scattering by an axially-segmented turbofan inlet duct liner at supersonic fan speeds

Fan noise is one of the principal noise sources in turbofan aero-engines. At supersonic fan speeds, fan tones are generated by the “rotor-alone” pressure field. In general, these tones can be well absorbed by an inlet duct acoustic liner, except at high supersonic fan speeds when the rotor-alone pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2006-07, Vol.294 (4), p.780-806
Hauptverfasser: McAlpine, A., Astley, R.J., Hii, V.J.T., Baker, N.J., Kempton, A.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 806
container_issue 4
container_start_page 780
container_title Journal of sound and vibration
container_volume 294
creator McAlpine, A.
Astley, R.J.
Hii, V.J.T.
Baker, N.J.
Kempton, A.J.
description Fan noise is one of the principal noise sources in turbofan aero-engines. At supersonic fan speeds, fan tones are generated by the “rotor-alone” pressure field. In general, these tones can be well absorbed by an inlet duct acoustic liner, except at high supersonic fan speeds when the rotor-alone pressure field is well cut-on. In this article an axially segmented liner is proposed, which is predicted to improve the attenuation of tones at high supersonic fan speeds. The analysis is based on locally reacting cavity liners. The axially segmented liner is axisymmetric and consists of two circular sections of different linings joined together. The optimum design consists of two linings with the same face-sheet resistance, but with different cavity depths. The depth of the liner adjacent to the fan is very thin. This means that where the two liners are joined there is a wall impedance discontinuity that can cause acoustic scattering. Fan tones can be modelled in terms of spinning modes in a uniform circular-section duct. The liner is axisymmetric, so modal scattering will be only between different radial modes. The optimum design minimizes the acoustic energy scattered into the first radial mode. This improves the attenuation of fan tones at high supersonic fan speeds, because acoustic energy is scattered into high radial mode orders, which are better absorbed by the lining.
doi_str_mv 10.1016/j.jsv.2005.12.039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29179666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X06000460</els_id><sourcerecordid>1082186428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-cf264462b1bb415905f31218e66791ca337c7501b6c765426c5a4757515e2de33</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMoOK7-AG-5KF66TaWTSjeelsUvWPCi4MmQTlcvGXrSY5JenH9vhlnwtp7qUM_71sfL2GsQLQjA9_t2n-9bKYRuQbaiG56wHYhBN73G_inbCSFlo1D8fM5e5LwXQgyqUzv269qvWy7B8-xdKZRCvOPjibvI3Z_gluXUZLo7UCw08bKlcZ1rK8SFCp82X_gSIiXuCs_bkVJeY7U6I_lINOWX7NnslkyvHuoV-_Hp4_ebL83tt89fb65vG69Ql8bPEpVCOcI4KtCD0HMHEnpCNAN413XGGy1gRG9QK4leO2W00aBJTtR1V-ztxfeY1t8b5WIPIXtaFhep3mflAGZAxAq-exQEgxIAe2H-j4q-rohK9hWFC-rTmnOi2R5TOLh0qpA952P3tuZjz_lYkLbmUzVvHuxdff0yJxd9yP-Epu-URlW5DxeO6v_uAyWbfaDoaQqJfLHTGh6Z8hfXd6Ry</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082186428</pqid></control><display><type>article</type><title>Acoustic scattering by an axially-segmented turbofan inlet duct liner at supersonic fan speeds</title><source>Access via ScienceDirect (Elsevier)</source><creator>McAlpine, A. ; Astley, R.J. ; Hii, V.J.T. ; Baker, N.J. ; Kempton, A.J.</creator><creatorcontrib>McAlpine, A. ; Astley, R.J. ; Hii, V.J.T. ; Baker, N.J. ; Kempton, A.J.</creatorcontrib><description>Fan noise is one of the principal noise sources in turbofan aero-engines. At supersonic fan speeds, fan tones are generated by the “rotor-alone” pressure field. In general, these tones can be well absorbed by an inlet duct acoustic liner, except at high supersonic fan speeds when the rotor-alone pressure field is well cut-on. In this article an axially segmented liner is proposed, which is predicted to improve the attenuation of tones at high supersonic fan speeds. The analysis is based on locally reacting cavity liners. The axially segmented liner is axisymmetric and consists of two circular sections of different linings joined together. The optimum design consists of two linings with the same face-sheet resistance, but with different cavity depths. The depth of the liner adjacent to the fan is very thin. This means that where the two liners are joined there is a wall impedance discontinuity that can cause acoustic scattering. Fan tones can be modelled in terms of spinning modes in a uniform circular-section duct. The liner is axisymmetric, so modal scattering will be only between different radial modes. The optimum design minimizes the acoustic energy scattered into the first radial mode. This improves the attenuation of fan tones at high supersonic fan speeds, because acoustic energy is scattered into high radial mode orders, which are better absorbed by the lining.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2005.12.039</identifier><identifier>CODEN: JSVIAG</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Acoustic scattering ; Acoustics ; Aeroacoustics, atmospheric sound ; Axisymmetric ; Ducts ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Inlets ; Linear acoustics ; Liners ; Linings ; Physics ; Supersonic aircraft</subject><ispartof>Journal of sound and vibration, 2006-07, Vol.294 (4), p.780-806</ispartof><rights>2006 Elsevier Ltd</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-cf264462b1bb415905f31218e66791ca337c7501b6c765426c5a4757515e2de33</citedby><cites>FETCH-LOGICAL-c465t-cf264462b1bb415905f31218e66791ca337c7501b6c765426c5a4757515e2de33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2005.12.039$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17834564$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>McAlpine, A.</creatorcontrib><creatorcontrib>Astley, R.J.</creatorcontrib><creatorcontrib>Hii, V.J.T.</creatorcontrib><creatorcontrib>Baker, N.J.</creatorcontrib><creatorcontrib>Kempton, A.J.</creatorcontrib><title>Acoustic scattering by an axially-segmented turbofan inlet duct liner at supersonic fan speeds</title><title>Journal of sound and vibration</title><description>Fan noise is one of the principal noise sources in turbofan aero-engines. At supersonic fan speeds, fan tones are generated by the “rotor-alone” pressure field. In general, these tones can be well absorbed by an inlet duct acoustic liner, except at high supersonic fan speeds when the rotor-alone pressure field is well cut-on. In this article an axially segmented liner is proposed, which is predicted to improve the attenuation of tones at high supersonic fan speeds. The analysis is based on locally reacting cavity liners. The axially segmented liner is axisymmetric and consists of two circular sections of different linings joined together. The optimum design consists of two linings with the same face-sheet resistance, but with different cavity depths. The depth of the liner adjacent to the fan is very thin. This means that where the two liners are joined there is a wall impedance discontinuity that can cause acoustic scattering. Fan tones can be modelled in terms of spinning modes in a uniform circular-section duct. The liner is axisymmetric, so modal scattering will be only between different radial modes. The optimum design minimizes the acoustic energy scattered into the first radial mode. This improves the attenuation of fan tones at high supersonic fan speeds, because acoustic energy is scattered into high radial mode orders, which are better absorbed by the lining.</description><subject>Acoustic scattering</subject><subject>Acoustics</subject><subject>Aeroacoustics, atmospheric sound</subject><subject>Axisymmetric</subject><subject>Ducts</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inlets</subject><subject>Linear acoustics</subject><subject>Liners</subject><subject>Linings</subject><subject>Physics</subject><subject>Supersonic aircraft</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkU2LFDEQhoMoOK7-AG-5KF66TaWTSjeelsUvWPCi4MmQTlcvGXrSY5JenH9vhlnwtp7qUM_71sfL2GsQLQjA9_t2n-9bKYRuQbaiG56wHYhBN73G_inbCSFlo1D8fM5e5LwXQgyqUzv269qvWy7B8-xdKZRCvOPjibvI3Z_gluXUZLo7UCw08bKlcZ1rK8SFCp82X_gSIiXuCs_bkVJeY7U6I_lINOWX7NnslkyvHuoV-_Hp4_ebL83tt89fb65vG69Ql8bPEpVCOcI4KtCD0HMHEnpCNAN413XGGy1gRG9QK4leO2W00aBJTtR1V-ztxfeY1t8b5WIPIXtaFhep3mflAGZAxAq-exQEgxIAe2H-j4q-rohK9hWFC-rTmnOi2R5TOLh0qpA952P3tuZjz_lYkLbmUzVvHuxdff0yJxd9yP-Epu-URlW5DxeO6v_uAyWbfaDoaQqJfLHTGh6Z8hfXd6Ry</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>McAlpine, A.</creator><creator>Astley, R.J.</creator><creator>Hii, V.J.T.</creator><creator>Baker, N.J.</creator><creator>Kempton, A.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20060701</creationdate><title>Acoustic scattering by an axially-segmented turbofan inlet duct liner at supersonic fan speeds</title><author>McAlpine, A. ; Astley, R.J. ; Hii, V.J.T. ; Baker, N.J. ; Kempton, A.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-cf264462b1bb415905f31218e66791ca337c7501b6c765426c5a4757515e2de33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acoustic scattering</topic><topic>Acoustics</topic><topic>Aeroacoustics, atmospheric sound</topic><topic>Axisymmetric</topic><topic>Ducts</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inlets</topic><topic>Linear acoustics</topic><topic>Liners</topic><topic>Linings</topic><topic>Physics</topic><topic>Supersonic aircraft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McAlpine, A.</creatorcontrib><creatorcontrib>Astley, R.J.</creatorcontrib><creatorcontrib>Hii, V.J.T.</creatorcontrib><creatorcontrib>Baker, N.J.</creatorcontrib><creatorcontrib>Kempton, A.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McAlpine, A.</au><au>Astley, R.J.</au><au>Hii, V.J.T.</au><au>Baker, N.J.</au><au>Kempton, A.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic scattering by an axially-segmented turbofan inlet duct liner at supersonic fan speeds</atitle><jtitle>Journal of sound and vibration</jtitle><date>2006-07-01</date><risdate>2006</risdate><volume>294</volume><issue>4</issue><spage>780</spage><epage>806</epage><pages>780-806</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><coden>JSVIAG</coden><abstract>Fan noise is one of the principal noise sources in turbofan aero-engines. At supersonic fan speeds, fan tones are generated by the “rotor-alone” pressure field. In general, these tones can be well absorbed by an inlet duct acoustic liner, except at high supersonic fan speeds when the rotor-alone pressure field is well cut-on. In this article an axially segmented liner is proposed, which is predicted to improve the attenuation of tones at high supersonic fan speeds. The analysis is based on locally reacting cavity liners. The axially segmented liner is axisymmetric and consists of two circular sections of different linings joined together. The optimum design consists of two linings with the same face-sheet resistance, but with different cavity depths. The depth of the liner adjacent to the fan is very thin. This means that where the two liners are joined there is a wall impedance discontinuity that can cause acoustic scattering. Fan tones can be modelled in terms of spinning modes in a uniform circular-section duct. The liner is axisymmetric, so modal scattering will be only between different radial modes. The optimum design minimizes the acoustic energy scattered into the first radial mode. This improves the attenuation of fan tones at high supersonic fan speeds, because acoustic energy is scattered into high radial mode orders, which are better absorbed by the lining.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2005.12.039</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2006-07, Vol.294 (4), p.780-806
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_miscellaneous_29179666
source Access via ScienceDirect (Elsevier)
subjects Acoustic scattering
Acoustics
Aeroacoustics, atmospheric sound
Axisymmetric
Ducts
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Inlets
Linear acoustics
Liners
Linings
Physics
Supersonic aircraft
title Acoustic scattering by an axially-segmented turbofan inlet duct liner at supersonic fan speeds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A24%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20scattering%20by%20an%20axially-segmented%20turbofan%20inlet%20duct%20liner%20at%20supersonic%20fan%20speeds&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=McAlpine,%20A.&rft.date=2006-07-01&rft.volume=294&rft.issue=4&rft.spage=780&rft.epage=806&rft.pages=780-806&rft.issn=0022-460X&rft.eissn=1095-8568&rft.coden=JSVIAG&rft_id=info:doi/10.1016/j.jsv.2005.12.039&rft_dat=%3Cproquest_cross%3E1082186428%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082186428&rft_id=info:pmid/&rft_els_id=S0022460X06000460&rfr_iscdi=true