Computational Design of Peptide Assemblies
With the ongoing development of peptide self-assembling materials, there is growing interest in exploring novel functional peptide sequences. From short peptides to long polypeptides, as the functionality increases, the sequence space is also expanding exponentially. Consequently, attempting to expl...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2024-01, Vol.20 (2), p.532-550 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 550 |
---|---|
container_issue | 2 |
container_start_page | 532 |
container_title | Journal of chemical theory and computation |
container_volume | 20 |
creator | Min, Jiwei Rong, Xi Zhang, Jiaxing Su, Rongxin Wang, Yuefei Qi, Wei |
description | With the ongoing development of peptide self-assembling materials, there is growing interest in exploring novel functional peptide sequences. From short peptides to long polypeptides, as the functionality increases, the sequence space is also expanding exponentially. Consequently, attempting to explore all functional sequences comprehensively through experience and experiments alone has become impractical. By utilizing computational methods, especially artificial intelligence enhanced molecular dynamics (MD) simulation and de novo peptide design, there has been a significant expansion in the exploration of sequence space. Through these methods, a variety of supramolecular functional materials, including fibers, two-dimensional arrays, nanocages, etc., have been designed by meticulously controlling the inter- and intramolecular interactions. In this review, we first provide a brief overview of the current main computational methods and then focus on the computational design methods for various self-assembled peptide materials. Additionally, we introduce some representative protein self-assemblies to offer guidance for the design of self-assembling peptides. |
doi_str_mv | 10.1021/acs.jctc.3c01054 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2917864946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917864946</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-ba2a8ff7ebccc82acfbc82ae80dc7a63ed58f856856b191ce16d02b2fe77970e3</originalsourceid><addsrcrecordid>eNp1kL9PwzAQhS0EoqWwM6GMCJFythPHGavyU6oEA8yW45xRqqQOuWTgvyelpRvSSe-G773hY-ySw5yD4HfW0XztejeXDjikyRGb8jTJ41wJdXz4uZ6wM6I1gJSJkKdsIrUApQGm7GYZmnbobV-Fja2je6TqcxMFH71h21clRgsibIq6QjpnJ97WhBf7nLGPx4f35XO8en16WS5WsZVS9XFhhdXeZ1g457SwzhfbQA2ly6ySWKba61SNV_CcO-SqBFEIj1mWZ4Byxq53u20Xvgak3jQVOaxru8EwkBE5z7RK8kSNKOxQ1wWiDr1pu6qx3bfhYLaGzGjIbA2ZvaGxcrVfH4oGy0PhT8kI3O6A32oYutEL_b_3A9z6cfM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917864946</pqid></control><display><type>article</type><title>Computational Design of Peptide Assemblies</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Min, Jiwei ; Rong, Xi ; Zhang, Jiaxing ; Su, Rongxin ; Wang, Yuefei ; Qi, Wei</creator><creatorcontrib>Min, Jiwei ; Rong, Xi ; Zhang, Jiaxing ; Su, Rongxin ; Wang, Yuefei ; Qi, Wei</creatorcontrib><description>With the ongoing development of peptide self-assembling materials, there is growing interest in exploring novel functional peptide sequences. From short peptides to long polypeptides, as the functionality increases, the sequence space is also expanding exponentially. Consequently, attempting to explore all functional sequences comprehensively through experience and experiments alone has become impractical. By utilizing computational methods, especially artificial intelligence enhanced molecular dynamics (MD) simulation and de novo peptide design, there has been a significant expansion in the exploration of sequence space. Through these methods, a variety of supramolecular functional materials, including fibers, two-dimensional arrays, nanocages, etc., have been designed by meticulously controlling the inter- and intramolecular interactions. In this review, we first provide a brief overview of the current main computational methods and then focus on the computational design methods for various self-assembled peptide materials. Additionally, we introduce some representative protein self-assemblies to offer guidance for the design of self-assembling peptides.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.3c01054</identifier><identifier>PMID: 38206800</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Sequence ; Artificial Intelligence ; Molecular Dynamics Simulation ; Peptides - chemistry ; Proteins</subject><ispartof>Journal of chemical theory and computation, 2024-01, Vol.20 (2), p.532-550</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a336t-ba2a8ff7ebccc82acfbc82ae80dc7a63ed58f856856b191ce16d02b2fe77970e3</citedby><cites>FETCH-LOGICAL-a336t-ba2a8ff7ebccc82acfbc82ae80dc7a63ed58f856856b191ce16d02b2fe77970e3</cites><orcidid>0000-0002-7378-1392 ; 0000-0001-9778-9113 ; 0000-0003-4104-6657 ; 0000-0002-5736-7431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.3c01054$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.3c01054$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38206800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Min, Jiwei</creatorcontrib><creatorcontrib>Rong, Xi</creatorcontrib><creatorcontrib>Zhang, Jiaxing</creatorcontrib><creatorcontrib>Su, Rongxin</creatorcontrib><creatorcontrib>Wang, Yuefei</creatorcontrib><creatorcontrib>Qi, Wei</creatorcontrib><title>Computational Design of Peptide Assemblies</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>With the ongoing development of peptide self-assembling materials, there is growing interest in exploring novel functional peptide sequences. From short peptides to long polypeptides, as the functionality increases, the sequence space is also expanding exponentially. Consequently, attempting to explore all functional sequences comprehensively through experience and experiments alone has become impractical. By utilizing computational methods, especially artificial intelligence enhanced molecular dynamics (MD) simulation and de novo peptide design, there has been a significant expansion in the exploration of sequence space. Through these methods, a variety of supramolecular functional materials, including fibers, two-dimensional arrays, nanocages, etc., have been designed by meticulously controlling the inter- and intramolecular interactions. In this review, we first provide a brief overview of the current main computational methods and then focus on the computational design methods for various self-assembled peptide materials. Additionally, we introduce some representative protein self-assemblies to offer guidance for the design of self-assembling peptides.</description><subject>Amino Acid Sequence</subject><subject>Artificial Intelligence</subject><subject>Molecular Dynamics Simulation</subject><subject>Peptides - chemistry</subject><subject>Proteins</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kL9PwzAQhS0EoqWwM6GMCJFythPHGavyU6oEA8yW45xRqqQOuWTgvyelpRvSSe-G773hY-ySw5yD4HfW0XztejeXDjikyRGb8jTJ41wJdXz4uZ6wM6I1gJSJkKdsIrUApQGm7GYZmnbobV-Fja2je6TqcxMFH71h21clRgsibIq6QjpnJ97WhBf7nLGPx4f35XO8en16WS5WsZVS9XFhhdXeZ1g457SwzhfbQA2ly6ySWKba61SNV_CcO-SqBFEIj1mWZ4Byxq53u20Xvgak3jQVOaxru8EwkBE5z7RK8kSNKOxQ1wWiDr1pu6qx3bfhYLaGzGjIbA2ZvaGxcrVfH4oGy0PhT8kI3O6A32oYutEL_b_3A9z6cfM</recordid><startdate>20240123</startdate><enddate>20240123</enddate><creator>Min, Jiwei</creator><creator>Rong, Xi</creator><creator>Zhang, Jiaxing</creator><creator>Su, Rongxin</creator><creator>Wang, Yuefei</creator><creator>Qi, Wei</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7378-1392</orcidid><orcidid>https://orcid.org/0000-0001-9778-9113</orcidid><orcidid>https://orcid.org/0000-0003-4104-6657</orcidid><orcidid>https://orcid.org/0000-0002-5736-7431</orcidid></search><sort><creationdate>20240123</creationdate><title>Computational Design of Peptide Assemblies</title><author>Min, Jiwei ; Rong, Xi ; Zhang, Jiaxing ; Su, Rongxin ; Wang, Yuefei ; Qi, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-ba2a8ff7ebccc82acfbc82ae80dc7a63ed58f856856b191ce16d02b2fe77970e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amino Acid Sequence</topic><topic>Artificial Intelligence</topic><topic>Molecular Dynamics Simulation</topic><topic>Peptides - chemistry</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Min, Jiwei</creatorcontrib><creatorcontrib>Rong, Xi</creatorcontrib><creatorcontrib>Zhang, Jiaxing</creatorcontrib><creatorcontrib>Su, Rongxin</creatorcontrib><creatorcontrib>Wang, Yuefei</creatorcontrib><creatorcontrib>Qi, Wei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Min, Jiwei</au><au>Rong, Xi</au><au>Zhang, Jiaxing</au><au>Su, Rongxin</au><au>Wang, Yuefei</au><au>Qi, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Design of Peptide Assemblies</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2024-01-23</date><risdate>2024</risdate><volume>20</volume><issue>2</issue><spage>532</spage><epage>550</epage><pages>532-550</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>With the ongoing development of peptide self-assembling materials, there is growing interest in exploring novel functional peptide sequences. From short peptides to long polypeptides, as the functionality increases, the sequence space is also expanding exponentially. Consequently, attempting to explore all functional sequences comprehensively through experience and experiments alone has become impractical. By utilizing computational methods, especially artificial intelligence enhanced molecular dynamics (MD) simulation and de novo peptide design, there has been a significant expansion in the exploration of sequence space. Through these methods, a variety of supramolecular functional materials, including fibers, two-dimensional arrays, nanocages, etc., have been designed by meticulously controlling the inter- and intramolecular interactions. In this review, we first provide a brief overview of the current main computational methods and then focus on the computational design methods for various self-assembled peptide materials. Additionally, we introduce some representative protein self-assemblies to offer guidance for the design of self-assembling peptides.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38206800</pmid><doi>10.1021/acs.jctc.3c01054</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-7378-1392</orcidid><orcidid>https://orcid.org/0000-0001-9778-9113</orcidid><orcidid>https://orcid.org/0000-0003-4104-6657</orcidid><orcidid>https://orcid.org/0000-0002-5736-7431</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2024-01, Vol.20 (2), p.532-550 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_proquest_miscellaneous_2917864946 |
source | MEDLINE; American Chemical Society Journals |
subjects | Amino Acid Sequence Artificial Intelligence Molecular Dynamics Simulation Peptides - chemistry Proteins |
title | Computational Design of Peptide Assemblies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A21%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Design%20of%20Peptide%20Assemblies&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Min,%20Jiwei&rft.date=2024-01-23&rft.volume=20&rft.issue=2&rft.spage=532&rft.epage=550&rft.pages=532-550&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.3c01054&rft_dat=%3Cproquest_cross%3E2917864946%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917864946&rft_id=info:pmid/38206800&rfr_iscdi=true |