Computational Design of Peptide Assemblies

With the ongoing development of peptide self-assembling materials, there is growing interest in exploring novel functional peptide sequences. From short peptides to long polypeptides, as the functionality increases, the sequence space is also expanding exponentially. Consequently, attempting to expl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2024-01, Vol.20 (2), p.532-550
Hauptverfasser: Min, Jiwei, Rong, Xi, Zhang, Jiaxing, Su, Rongxin, Wang, Yuefei, Qi, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 550
container_issue 2
container_start_page 532
container_title Journal of chemical theory and computation
container_volume 20
creator Min, Jiwei
Rong, Xi
Zhang, Jiaxing
Su, Rongxin
Wang, Yuefei
Qi, Wei
description With the ongoing development of peptide self-assembling materials, there is growing interest in exploring novel functional peptide sequences. From short peptides to long polypeptides, as the functionality increases, the sequence space is also expanding exponentially. Consequently, attempting to explore all functional sequences comprehensively through experience and experiments alone has become impractical. By utilizing computational methods, especially artificial intelligence enhanced molecular dynamics (MD) simulation and de novo peptide design, there has been a significant expansion in the exploration of sequence space. Through these methods, a variety of supramolecular functional materials, including fibers, two-dimensional arrays, nanocages, etc., have been designed by meticulously controlling the inter- and intramolecular interactions. In this review, we first provide a brief overview of the current main computational methods and then focus on the computational design methods for various self-assembled peptide materials. Additionally, we introduce some representative protein self-assemblies to offer guidance for the design of self-assembling peptides.
doi_str_mv 10.1021/acs.jctc.3c01054
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2917864946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917864946</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-ba2a8ff7ebccc82acfbc82ae80dc7a63ed58f856856b191ce16d02b2fe77970e3</originalsourceid><addsrcrecordid>eNp1kL9PwzAQhS0EoqWwM6GMCJFythPHGavyU6oEA8yW45xRqqQOuWTgvyelpRvSSe-G773hY-ySw5yD4HfW0XztejeXDjikyRGb8jTJ41wJdXz4uZ6wM6I1gJSJkKdsIrUApQGm7GYZmnbobV-Fja2je6TqcxMFH71h21clRgsibIq6QjpnJ97WhBf7nLGPx4f35XO8en16WS5WsZVS9XFhhdXeZ1g457SwzhfbQA2ly6ySWKba61SNV_CcO-SqBFEIj1mWZ4Byxq53u20Xvgak3jQVOaxru8EwkBE5z7RK8kSNKOxQ1wWiDr1pu6qx3bfhYLaGzGjIbA2ZvaGxcrVfH4oGy0PhT8kI3O6A32oYutEL_b_3A9z6cfM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917864946</pqid></control><display><type>article</type><title>Computational Design of Peptide Assemblies</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Min, Jiwei ; Rong, Xi ; Zhang, Jiaxing ; Su, Rongxin ; Wang, Yuefei ; Qi, Wei</creator><creatorcontrib>Min, Jiwei ; Rong, Xi ; Zhang, Jiaxing ; Su, Rongxin ; Wang, Yuefei ; Qi, Wei</creatorcontrib><description>With the ongoing development of peptide self-assembling materials, there is growing interest in exploring novel functional peptide sequences. From short peptides to long polypeptides, as the functionality increases, the sequence space is also expanding exponentially. Consequently, attempting to explore all functional sequences comprehensively through experience and experiments alone has become impractical. By utilizing computational methods, especially artificial intelligence enhanced molecular dynamics (MD) simulation and de novo peptide design, there has been a significant expansion in the exploration of sequence space. Through these methods, a variety of supramolecular functional materials, including fibers, two-dimensional arrays, nanocages, etc., have been designed by meticulously controlling the inter- and intramolecular interactions. In this review, we first provide a brief overview of the current main computational methods and then focus on the computational design methods for various self-assembled peptide materials. Additionally, we introduce some representative protein self-assemblies to offer guidance for the design of self-assembling peptides.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.3c01054</identifier><identifier>PMID: 38206800</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Sequence ; Artificial Intelligence ; Molecular Dynamics Simulation ; Peptides - chemistry ; Proteins</subject><ispartof>Journal of chemical theory and computation, 2024-01, Vol.20 (2), p.532-550</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a336t-ba2a8ff7ebccc82acfbc82ae80dc7a63ed58f856856b191ce16d02b2fe77970e3</citedby><cites>FETCH-LOGICAL-a336t-ba2a8ff7ebccc82acfbc82ae80dc7a63ed58f856856b191ce16d02b2fe77970e3</cites><orcidid>0000-0002-7378-1392 ; 0000-0001-9778-9113 ; 0000-0003-4104-6657 ; 0000-0002-5736-7431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.3c01054$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.3c01054$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38206800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Min, Jiwei</creatorcontrib><creatorcontrib>Rong, Xi</creatorcontrib><creatorcontrib>Zhang, Jiaxing</creatorcontrib><creatorcontrib>Su, Rongxin</creatorcontrib><creatorcontrib>Wang, Yuefei</creatorcontrib><creatorcontrib>Qi, Wei</creatorcontrib><title>Computational Design of Peptide Assemblies</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>With the ongoing development of peptide self-assembling materials, there is growing interest in exploring novel functional peptide sequences. From short peptides to long polypeptides, as the functionality increases, the sequence space is also expanding exponentially. Consequently, attempting to explore all functional sequences comprehensively through experience and experiments alone has become impractical. By utilizing computational methods, especially artificial intelligence enhanced molecular dynamics (MD) simulation and de novo peptide design, there has been a significant expansion in the exploration of sequence space. Through these methods, a variety of supramolecular functional materials, including fibers, two-dimensional arrays, nanocages, etc., have been designed by meticulously controlling the inter- and intramolecular interactions. In this review, we first provide a brief overview of the current main computational methods and then focus on the computational design methods for various self-assembled peptide materials. Additionally, we introduce some representative protein self-assemblies to offer guidance for the design of self-assembling peptides.</description><subject>Amino Acid Sequence</subject><subject>Artificial Intelligence</subject><subject>Molecular Dynamics Simulation</subject><subject>Peptides - chemistry</subject><subject>Proteins</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kL9PwzAQhS0EoqWwM6GMCJFythPHGavyU6oEA8yW45xRqqQOuWTgvyelpRvSSe-G773hY-ySw5yD4HfW0XztejeXDjikyRGb8jTJ41wJdXz4uZ6wM6I1gJSJkKdsIrUApQGm7GYZmnbobV-Fja2je6TqcxMFH71h21clRgsibIq6QjpnJ97WhBf7nLGPx4f35XO8en16WS5WsZVS9XFhhdXeZ1g457SwzhfbQA2ly6ySWKba61SNV_CcO-SqBFEIj1mWZ4Byxq53u20Xvgak3jQVOaxru8EwkBE5z7RK8kSNKOxQ1wWiDr1pu6qx3bfhYLaGzGjIbA2ZvaGxcrVfH4oGy0PhT8kI3O6A32oYutEL_b_3A9z6cfM</recordid><startdate>20240123</startdate><enddate>20240123</enddate><creator>Min, Jiwei</creator><creator>Rong, Xi</creator><creator>Zhang, Jiaxing</creator><creator>Su, Rongxin</creator><creator>Wang, Yuefei</creator><creator>Qi, Wei</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7378-1392</orcidid><orcidid>https://orcid.org/0000-0001-9778-9113</orcidid><orcidid>https://orcid.org/0000-0003-4104-6657</orcidid><orcidid>https://orcid.org/0000-0002-5736-7431</orcidid></search><sort><creationdate>20240123</creationdate><title>Computational Design of Peptide Assemblies</title><author>Min, Jiwei ; Rong, Xi ; Zhang, Jiaxing ; Su, Rongxin ; Wang, Yuefei ; Qi, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-ba2a8ff7ebccc82acfbc82ae80dc7a63ed58f856856b191ce16d02b2fe77970e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amino Acid Sequence</topic><topic>Artificial Intelligence</topic><topic>Molecular Dynamics Simulation</topic><topic>Peptides - chemistry</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Min, Jiwei</creatorcontrib><creatorcontrib>Rong, Xi</creatorcontrib><creatorcontrib>Zhang, Jiaxing</creatorcontrib><creatorcontrib>Su, Rongxin</creatorcontrib><creatorcontrib>Wang, Yuefei</creatorcontrib><creatorcontrib>Qi, Wei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Min, Jiwei</au><au>Rong, Xi</au><au>Zhang, Jiaxing</au><au>Su, Rongxin</au><au>Wang, Yuefei</au><au>Qi, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Design of Peptide Assemblies</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2024-01-23</date><risdate>2024</risdate><volume>20</volume><issue>2</issue><spage>532</spage><epage>550</epage><pages>532-550</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>With the ongoing development of peptide self-assembling materials, there is growing interest in exploring novel functional peptide sequences. From short peptides to long polypeptides, as the functionality increases, the sequence space is also expanding exponentially. Consequently, attempting to explore all functional sequences comprehensively through experience and experiments alone has become impractical. By utilizing computational methods, especially artificial intelligence enhanced molecular dynamics (MD) simulation and de novo peptide design, there has been a significant expansion in the exploration of sequence space. Through these methods, a variety of supramolecular functional materials, including fibers, two-dimensional arrays, nanocages, etc., have been designed by meticulously controlling the inter- and intramolecular interactions. In this review, we first provide a brief overview of the current main computational methods and then focus on the computational design methods for various self-assembled peptide materials. Additionally, we introduce some representative protein self-assemblies to offer guidance for the design of self-assembling peptides.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38206800</pmid><doi>10.1021/acs.jctc.3c01054</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-7378-1392</orcidid><orcidid>https://orcid.org/0000-0001-9778-9113</orcidid><orcidid>https://orcid.org/0000-0003-4104-6657</orcidid><orcidid>https://orcid.org/0000-0002-5736-7431</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2024-01, Vol.20 (2), p.532-550
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_2917864946
source MEDLINE; American Chemical Society Journals
subjects Amino Acid Sequence
Artificial Intelligence
Molecular Dynamics Simulation
Peptides - chemistry
Proteins
title Computational Design of Peptide Assemblies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A21%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Design%20of%20Peptide%20Assemblies&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Min,%20Jiwei&rft.date=2024-01-23&rft.volume=20&rft.issue=2&rft.spage=532&rft.epage=550&rft.pages=532-550&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.3c01054&rft_dat=%3Cproquest_cross%3E2917864946%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917864946&rft_id=info:pmid/38206800&rfr_iscdi=true