Effect of Connectivity on the Carrier Transport and Recombination Dynamics of Perovskite Quantum-Dot Networks

Quantum-dot (QD) solids are being widely exploited as a solution-processable technology to develop photovoltaic, light-emission, and photodetection devices. Charge transport in these materials is the result of a compromise between confinement at the individual QD level and electronic coupling among...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2024-01, Vol.18 (3), p.2325-2334
Hauptverfasser: Tiede, David O., Romero-Pérez, Carlos, Koch, Katherine A., Ucer, K. Burak, Calvo, Mauricio E., Srimath Kandada, Ajay Ram, Galisteo-López, Juan F., Míguez, Hernán
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2334
container_issue 3
container_start_page 2325
container_title ACS nano
container_volume 18
creator Tiede, David O.
Romero-Pérez, Carlos
Koch, Katherine A.
Ucer, K. Burak
Calvo, Mauricio E.
Srimath Kandada, Ajay Ram
Galisteo-López, Juan F.
Míguez, Hernán
description Quantum-dot (QD) solids are being widely exploited as a solution-processable technology to develop photovoltaic, light-emission, and photodetection devices. Charge transport in these materials is the result of a compromise between confinement at the individual QD level and electronic coupling among the different nanocrystals in the ensemble. While this is commonly achieved by ligand engineering in colloidal-based systems, ligand-free QD assemblies have recently emerged as an exciting alternative where nanostructures can be directly grown into porous matrices with optical quality as well as control over their connectivity and, hence, charge transport properties. In this context, we present a complete photophysical study comprising fluence- and temperature-dependent time-resolved spectroscopy to study carrier dynamics in ligand-free QD networks with gradually varying degrees of interconnectivity, which we achieve by changing the average distance between the QDs. Analysis of the photoluminescence and absorption properties of the QD assemblies, involving both static and time-resolved measurements, allows us to identify the weight of the different recombination mechanisms, both radiative and nonradiative, as a function of QD connectivity. We propose a picture where carrier diffusion, which is needed for any optoelectronic application and implies interparticle transport, gives rise to the exposure of carriers to a larger defect landscape than in the case of isolated QDs. The use of a broad range of fluences permits extracting valuable information for applications demanding either low- or high-carrier-injection levels and highlighting the relevance of a judicious design to balance recombination and diffusion.
doi_str_mv 10.1021/acsnano.3c10239
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2917864933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917864933</sourcerecordid><originalsourceid>FETCH-LOGICAL-a328t-a72c456dc3bc852fe07d3bc9dd161cd5888f1601a4b0dcbcedd67ae7eb8a9c4c3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoVqtnb5KjIKvJppvNHqX1C4pfKHhbsskspnaTmmQr_fdGWnvzNO_AMy_Mg9AJJReU5PRSqmCldRdMpZVVO-iAVoxnRPD33W0u6AAdhjAjpChFyffRgImccJHTA9Rdty2oiF2Lx87aFM3SxBV2FscPwGPpvQGPX720YeF8xNJq_ALKdY2xMprETVZWdkaF344n8G4ZPk0E_NxLG_sum7iIHyB-O_8ZjtBeK-cBjjdziN5url_Hd9n08fZ-fDXNJMtFzGSZq1HBtWKNEkXeAil1ipXWlFOlCyFESzmhctQQrRoFWvNSQgmNkJUaKTZEZ-vehXdfPYRYdyYomM-lBdeHOq9oKfioYiyhl2tUeReCh7ZeeNNJv6opqX8d1xvH9cZxujjdlPdNB3rL_0lNwPkaSJf1zPXepl__rfsBU5qKnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917864933</pqid></control><display><type>article</type><title>Effect of Connectivity on the Carrier Transport and Recombination Dynamics of Perovskite Quantum-Dot Networks</title><source>ACS Publications</source><creator>Tiede, David O. ; Romero-Pérez, Carlos ; Koch, Katherine A. ; Ucer, K. Burak ; Calvo, Mauricio E. ; Srimath Kandada, Ajay Ram ; Galisteo-López, Juan F. ; Míguez, Hernán</creator><creatorcontrib>Tiede, David O. ; Romero-Pérez, Carlos ; Koch, Katherine A. ; Ucer, K. Burak ; Calvo, Mauricio E. ; Srimath Kandada, Ajay Ram ; Galisteo-López, Juan F. ; Míguez, Hernán</creatorcontrib><description>Quantum-dot (QD) solids are being widely exploited as a solution-processable technology to develop photovoltaic, light-emission, and photodetection devices. Charge transport in these materials is the result of a compromise between confinement at the individual QD level and electronic coupling among the different nanocrystals in the ensemble. While this is commonly achieved by ligand engineering in colloidal-based systems, ligand-free QD assemblies have recently emerged as an exciting alternative where nanostructures can be directly grown into porous matrices with optical quality as well as control over their connectivity and, hence, charge transport properties. In this context, we present a complete photophysical study comprising fluence- and temperature-dependent time-resolved spectroscopy to study carrier dynamics in ligand-free QD networks with gradually varying degrees of interconnectivity, which we achieve by changing the average distance between the QDs. Analysis of the photoluminescence and absorption properties of the QD assemblies, involving both static and time-resolved measurements, allows us to identify the weight of the different recombination mechanisms, both radiative and nonradiative, as a function of QD connectivity. We propose a picture where carrier diffusion, which is needed for any optoelectronic application and implies interparticle transport, gives rise to the exposure of carriers to a larger defect landscape than in the case of isolated QDs. The use of a broad range of fluences permits extracting valuable information for applications demanding either low- or high-carrier-injection levels and highlighting the relevance of a judicious design to balance recombination and diffusion.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.3c10239</identifier><identifier>PMID: 38206821</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2024-01, Vol.18 (3), p.2325-2334</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a328t-a72c456dc3bc852fe07d3bc9dd161cd5888f1601a4b0dcbcedd67ae7eb8a9c4c3</cites><orcidid>0000-0002-7987-4813 ; 0000-0002-7420-1150 ; 0000-0002-1721-7260 ; 0000-0003-2925-6360 ; 0000-0002-8010-0022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.3c10239$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.3c10239$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38206821$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tiede, David O.</creatorcontrib><creatorcontrib>Romero-Pérez, Carlos</creatorcontrib><creatorcontrib>Koch, Katherine A.</creatorcontrib><creatorcontrib>Ucer, K. Burak</creatorcontrib><creatorcontrib>Calvo, Mauricio E.</creatorcontrib><creatorcontrib>Srimath Kandada, Ajay Ram</creatorcontrib><creatorcontrib>Galisteo-López, Juan F.</creatorcontrib><creatorcontrib>Míguez, Hernán</creatorcontrib><title>Effect of Connectivity on the Carrier Transport and Recombination Dynamics of Perovskite Quantum-Dot Networks</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Quantum-dot (QD) solids are being widely exploited as a solution-processable technology to develop photovoltaic, light-emission, and photodetection devices. Charge transport in these materials is the result of a compromise between confinement at the individual QD level and electronic coupling among the different nanocrystals in the ensemble. While this is commonly achieved by ligand engineering in colloidal-based systems, ligand-free QD assemblies have recently emerged as an exciting alternative where nanostructures can be directly grown into porous matrices with optical quality as well as control over their connectivity and, hence, charge transport properties. In this context, we present a complete photophysical study comprising fluence- and temperature-dependent time-resolved spectroscopy to study carrier dynamics in ligand-free QD networks with gradually varying degrees of interconnectivity, which we achieve by changing the average distance between the QDs. Analysis of the photoluminescence and absorption properties of the QD assemblies, involving both static and time-resolved measurements, allows us to identify the weight of the different recombination mechanisms, both radiative and nonradiative, as a function of QD connectivity. We propose a picture where carrier diffusion, which is needed for any optoelectronic application and implies interparticle transport, gives rise to the exposure of carriers to a larger defect landscape than in the case of isolated QDs. The use of a broad range of fluences permits extracting valuable information for applications demanding either low- or high-carrier-injection levels and highlighting the relevance of a judicious design to balance recombination and diffusion.</description><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoVqtnb5KjIKvJppvNHqX1C4pfKHhbsskspnaTmmQr_fdGWnvzNO_AMy_Mg9AJJReU5PRSqmCldRdMpZVVO-iAVoxnRPD33W0u6AAdhjAjpChFyffRgImccJHTA9Rdty2oiF2Lx87aFM3SxBV2FscPwGPpvQGPX720YeF8xNJq_ALKdY2xMprETVZWdkaF344n8G4ZPk0E_NxLG_sum7iIHyB-O_8ZjtBeK-cBjjdziN5url_Hd9n08fZ-fDXNJMtFzGSZq1HBtWKNEkXeAil1ipXWlFOlCyFESzmhctQQrRoFWvNSQgmNkJUaKTZEZ-vehXdfPYRYdyYomM-lBdeHOq9oKfioYiyhl2tUeReCh7ZeeNNJv6opqX8d1xvH9cZxujjdlPdNB3rL_0lNwPkaSJf1zPXepl__rfsBU5qKnA</recordid><startdate>20240123</startdate><enddate>20240123</enddate><creator>Tiede, David O.</creator><creator>Romero-Pérez, Carlos</creator><creator>Koch, Katherine A.</creator><creator>Ucer, K. Burak</creator><creator>Calvo, Mauricio E.</creator><creator>Srimath Kandada, Ajay Ram</creator><creator>Galisteo-López, Juan F.</creator><creator>Míguez, Hernán</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7987-4813</orcidid><orcidid>https://orcid.org/0000-0002-7420-1150</orcidid><orcidid>https://orcid.org/0000-0002-1721-7260</orcidid><orcidid>https://orcid.org/0000-0003-2925-6360</orcidid><orcidid>https://orcid.org/0000-0002-8010-0022</orcidid></search><sort><creationdate>20240123</creationdate><title>Effect of Connectivity on the Carrier Transport and Recombination Dynamics of Perovskite Quantum-Dot Networks</title><author>Tiede, David O. ; Romero-Pérez, Carlos ; Koch, Katherine A. ; Ucer, K. Burak ; Calvo, Mauricio E. ; Srimath Kandada, Ajay Ram ; Galisteo-López, Juan F. ; Míguez, Hernán</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a328t-a72c456dc3bc852fe07d3bc9dd161cd5888f1601a4b0dcbcedd67ae7eb8a9c4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tiede, David O.</creatorcontrib><creatorcontrib>Romero-Pérez, Carlos</creatorcontrib><creatorcontrib>Koch, Katherine A.</creatorcontrib><creatorcontrib>Ucer, K. Burak</creatorcontrib><creatorcontrib>Calvo, Mauricio E.</creatorcontrib><creatorcontrib>Srimath Kandada, Ajay Ram</creatorcontrib><creatorcontrib>Galisteo-López, Juan F.</creatorcontrib><creatorcontrib>Míguez, Hernán</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tiede, David O.</au><au>Romero-Pérez, Carlos</au><au>Koch, Katherine A.</au><au>Ucer, K. Burak</au><au>Calvo, Mauricio E.</au><au>Srimath Kandada, Ajay Ram</au><au>Galisteo-López, Juan F.</au><au>Míguez, Hernán</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Connectivity on the Carrier Transport and Recombination Dynamics of Perovskite Quantum-Dot Networks</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-01-23</date><risdate>2024</risdate><volume>18</volume><issue>3</issue><spage>2325</spage><epage>2334</epage><pages>2325-2334</pages><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>Quantum-dot (QD) solids are being widely exploited as a solution-processable technology to develop photovoltaic, light-emission, and photodetection devices. Charge transport in these materials is the result of a compromise between confinement at the individual QD level and electronic coupling among the different nanocrystals in the ensemble. While this is commonly achieved by ligand engineering in colloidal-based systems, ligand-free QD assemblies have recently emerged as an exciting alternative where nanostructures can be directly grown into porous matrices with optical quality as well as control over their connectivity and, hence, charge transport properties. In this context, we present a complete photophysical study comprising fluence- and temperature-dependent time-resolved spectroscopy to study carrier dynamics in ligand-free QD networks with gradually varying degrees of interconnectivity, which we achieve by changing the average distance between the QDs. Analysis of the photoluminescence and absorption properties of the QD assemblies, involving both static and time-resolved measurements, allows us to identify the weight of the different recombination mechanisms, both radiative and nonradiative, as a function of QD connectivity. We propose a picture where carrier diffusion, which is needed for any optoelectronic application and implies interparticle transport, gives rise to the exposure of carriers to a larger defect landscape than in the case of isolated QDs. The use of a broad range of fluences permits extracting valuable information for applications demanding either low- or high-carrier-injection levels and highlighting the relevance of a judicious design to balance recombination and diffusion.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38206821</pmid><doi>10.1021/acsnano.3c10239</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7987-4813</orcidid><orcidid>https://orcid.org/0000-0002-7420-1150</orcidid><orcidid>https://orcid.org/0000-0002-1721-7260</orcidid><orcidid>https://orcid.org/0000-0003-2925-6360</orcidid><orcidid>https://orcid.org/0000-0002-8010-0022</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2024-01, Vol.18 (3), p.2325-2334
issn 1936-0851
1936-086X
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2917864933
source ACS Publications
title Effect of Connectivity on the Carrier Transport and Recombination Dynamics of Perovskite Quantum-Dot Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Connectivity%20on%20the%20Carrier%20Transport%20and%20Recombination%20Dynamics%20of%20Perovskite%20Quantum-Dot%20Networks&rft.jtitle=ACS%20nano&rft.au=Tiede,%20David%20O.&rft.date=2024-01-23&rft.volume=18&rft.issue=3&rft.spage=2325&rft.epage=2334&rft.pages=2325-2334&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.3c10239&rft_dat=%3Cproquest_cross%3E2917864933%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917864933&rft_id=info:pmid/38206821&rfr_iscdi=true