Self‐Propelled Nanomotor for Cancer Precision Combination Therapy

The emergence of nanomotor provides an innovative concept for tumor treatment strategies. Conventional chemotherapeutic agents for tumors exit various therapeutic constraints due to the unique microenvironment of the tumor itself. Calcium overload, the aberrant accumulation of free calcium ions in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced healthcare materials 2024-06, Vol.13 (15), p.e2304212-n/a
Hauptverfasser: Lu, Yijie, Liu, Shikang, Liang, Jiarong, Wang, Zhiyi, Hou, Yanglong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 15
container_start_page e2304212
container_title Advanced healthcare materials
container_volume 13
creator Lu, Yijie
Liu, Shikang
Liang, Jiarong
Wang, Zhiyi
Hou, Yanglong
description The emergence of nanomotor provides an innovative concept for tumor treatment strategies. Conventional chemotherapeutic agents for tumors exit various therapeutic constraints due to the unique microenvironment of the tumor itself. Calcium overload, the aberrant accumulation of free calcium ions in the cytoplasm, is a well‐recognized contributor to damage and even cell death in numerous cell types. Such undesired destructive processes can be a novel means applicable to cancer ion interference therapy. Herein, the chemotherapeutic drug doxorubicin (DOX) and calcium peroxide as the driving force into nanomotors through a facile and understandable experimental scheme are successfully assembled. The modification of nucleic acid aptamer and NIR‐II fluorescent molecules on its surface simultaneously strengthens both the active targeting and imaging capability of tumor loci. Therefore, by a comprehensive assessment of nanomotors both in vitro and in vivo experiments, CaO2/DOX@HPS‐IR‐1061‐AS1411 demonstrates superior killing effects on tumor cells, and the intracellular reactive oxygen species produced by nanomotors is verified by molecular biology experiments to induce apoptosis of tumor cells and further achieve tumor therapeutic effects. In this study, nanomotors containing the therapeutic drug doxorubicin and calcium peroxide as the driving force, whose modification of nucleic acid aptamers and fluorescent molecules enhances the active targeting and imaging, are successfully synthesized.
doi_str_mv 10.1002/adhm.202304212
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2917863563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067205482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3732-680b6a884f5d08b0c71d191af0a3fa976ad98c5ba65acf1cb1471744a11a242c3</originalsourceid><addsrcrecordid>eNqFkM1Kw0AUhQdRbKndupSCGzep85fJZFniT4WqBet6uJlMaEqSiTMN0p2P4DP6JKa0VnDjhcs9i-8eDgehc4LHBGN6DdmyGlNMGeaU0CPUpySmARVhfHzQHPfQ0PsV7kaEREhyinpM0jCmjPdR8mLK_Ovjc-5sY8rSZKMnqG1l19aN8m4TqLVxo7kzuvCFrUeJrdKihvVWL5bGQbM5Qyc5lN4M93eAXu9uF8k0mD3fPySTWaBZxGggJE4FSMnzMMMyxToiGYkJ5BhYDnEkIIulDlMQIeic6JTwiEScAyFAOdVsgK52vo2zb63xa1UVXnepoTa29YrGJJKChYJ16OUfdGVbV3fpFMMiojjkknbUeEdpZ713JleNKypwG0Ww2jastg2rQ8Pdw8Xetk0rkx3wnz47IN4B70VpNv_YqcnN9PHX_BvPzobA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067205482</pqid></control><display><type>article</type><title>Self‐Propelled Nanomotor for Cancer Precision Combination Therapy</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lu, Yijie ; Liu, Shikang ; Liang, Jiarong ; Wang, Zhiyi ; Hou, Yanglong</creator><creatorcontrib>Lu, Yijie ; Liu, Shikang ; Liang, Jiarong ; Wang, Zhiyi ; Hou, Yanglong</creatorcontrib><description>The emergence of nanomotor provides an innovative concept for tumor treatment strategies. Conventional chemotherapeutic agents for tumors exit various therapeutic constraints due to the unique microenvironment of the tumor itself. Calcium overload, the aberrant accumulation of free calcium ions in the cytoplasm, is a well‐recognized contributor to damage and even cell death in numerous cell types. Such undesired destructive processes can be a novel means applicable to cancer ion interference therapy. Herein, the chemotherapeutic drug doxorubicin (DOX) and calcium peroxide as the driving force into nanomotors through a facile and understandable experimental scheme are successfully assembled. The modification of nucleic acid aptamer and NIR‐II fluorescent molecules on its surface simultaneously strengthens both the active targeting and imaging capability of tumor loci. Therefore, by a comprehensive assessment of nanomotors both in vitro and in vivo experiments, CaO2/DOX@HPS‐IR‐1061‐AS1411 demonstrates superior killing effects on tumor cells, and the intracellular reactive oxygen species produced by nanomotors is verified by molecular biology experiments to induce apoptosis of tumor cells and further achieve tumor therapeutic effects. In this study, nanomotors containing the therapeutic drug doxorubicin and calcium peroxide as the driving force, whose modification of nucleic acid aptamers and fluorescent molecules enhances the active targeting and imaging, are successfully synthesized.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202304212</identifier><identifier>PMID: 38259234</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Antineoplastic drugs ; Apoptosis ; Apoptosis - drug effects ; Aptamers ; Aptamers, Nucleotide - chemistry ; Aptamers, Nucleotide - pharmacology ; Calcium ; Calcium ions ; calcium overload ; Cancer ; Cell death ; Cell Line, Tumor ; Chemotherapy ; Cytoplasm ; Doxorubicin ; Doxorubicin - chemistry ; Doxorubicin - pharmacology ; Doxorubicin - therapeutic use ; Fluorescence ; Humans ; ion interference therapy ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Microenvironments ; Molecular biology ; nanomotors ; Nanoparticles - chemistry ; Nanotechnology devices ; Neoplasms - drug therapy ; Neoplasms - metabolism ; Neoplasms - pathology ; Nucleic acids ; Peroxides - chemistry ; Peroxides - pharmacology ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Tumor cells ; Tumors</subject><ispartof>Advanced healthcare materials, 2024-06, Vol.13 (15), p.e2304212-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3732-680b6a884f5d08b0c71d191af0a3fa976ad98c5ba65acf1cb1471744a11a242c3</citedby><cites>FETCH-LOGICAL-c3732-680b6a884f5d08b0c71d191af0a3fa976ad98c5ba65acf1cb1471744a11a242c3</cites><orcidid>0000-0003-0579-4594</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.202304212$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.202304212$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38259234$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Yijie</creatorcontrib><creatorcontrib>Liu, Shikang</creatorcontrib><creatorcontrib>Liang, Jiarong</creatorcontrib><creatorcontrib>Wang, Zhiyi</creatorcontrib><creatorcontrib>Hou, Yanglong</creatorcontrib><title>Self‐Propelled Nanomotor for Cancer Precision Combination Therapy</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>The emergence of nanomotor provides an innovative concept for tumor treatment strategies. Conventional chemotherapeutic agents for tumors exit various therapeutic constraints due to the unique microenvironment of the tumor itself. Calcium overload, the aberrant accumulation of free calcium ions in the cytoplasm, is a well‐recognized contributor to damage and even cell death in numerous cell types. Such undesired destructive processes can be a novel means applicable to cancer ion interference therapy. Herein, the chemotherapeutic drug doxorubicin (DOX) and calcium peroxide as the driving force into nanomotors through a facile and understandable experimental scheme are successfully assembled. The modification of nucleic acid aptamer and NIR‐II fluorescent molecules on its surface simultaneously strengthens both the active targeting and imaging capability of tumor loci. Therefore, by a comprehensive assessment of nanomotors both in vitro and in vivo experiments, CaO2/DOX@HPS‐IR‐1061‐AS1411 demonstrates superior killing effects on tumor cells, and the intracellular reactive oxygen species produced by nanomotors is verified by molecular biology experiments to induce apoptosis of tumor cells and further achieve tumor therapeutic effects. In this study, nanomotors containing the therapeutic drug doxorubicin and calcium peroxide as the driving force, whose modification of nucleic acid aptamers and fluorescent molecules enhances the active targeting and imaging, are successfully synthesized.</description><subject>Animals</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Antineoplastic drugs</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Aptamers</subject><subject>Aptamers, Nucleotide - chemistry</subject><subject>Aptamers, Nucleotide - pharmacology</subject><subject>Calcium</subject><subject>Calcium ions</subject><subject>calcium overload</subject><subject>Cancer</subject><subject>Cell death</subject><subject>Cell Line, Tumor</subject><subject>Chemotherapy</subject><subject>Cytoplasm</subject><subject>Doxorubicin</subject><subject>Doxorubicin - chemistry</subject><subject>Doxorubicin - pharmacology</subject><subject>Doxorubicin - therapeutic use</subject><subject>Fluorescence</subject><subject>Humans</subject><subject>ion interference therapy</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>Microenvironments</subject><subject>Molecular biology</subject><subject>nanomotors</subject><subject>Nanoparticles - chemistry</subject><subject>Nanotechnology devices</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Nucleic acids</subject><subject>Peroxides - chemistry</subject><subject>Peroxides - pharmacology</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Tumor cells</subject><subject>Tumors</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1Kw0AUhQdRbKndupSCGzep85fJZFniT4WqBet6uJlMaEqSiTMN0p2P4DP6JKa0VnDjhcs9i-8eDgehc4LHBGN6DdmyGlNMGeaU0CPUpySmARVhfHzQHPfQ0PsV7kaEREhyinpM0jCmjPdR8mLK_Ovjc-5sY8rSZKMnqG1l19aN8m4TqLVxo7kzuvCFrUeJrdKihvVWL5bGQbM5Qyc5lN4M93eAXu9uF8k0mD3fPySTWaBZxGggJE4FSMnzMMMyxToiGYkJ5BhYDnEkIIulDlMQIeic6JTwiEScAyFAOdVsgK52vo2zb63xa1UVXnepoTa29YrGJJKChYJ16OUfdGVbV3fpFMMiojjkknbUeEdpZ713JleNKypwG0Ww2jastg2rQ8Pdw8Xetk0rkx3wnz47IN4B70VpNv_YqcnN9PHX_BvPzobA</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Lu, Yijie</creator><creator>Liu, Shikang</creator><creator>Liang, Jiarong</creator><creator>Wang, Zhiyi</creator><creator>Hou, Yanglong</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0579-4594</orcidid></search><sort><creationdate>20240601</creationdate><title>Self‐Propelled Nanomotor for Cancer Precision Combination Therapy</title><author>Lu, Yijie ; Liu, Shikang ; Liang, Jiarong ; Wang, Zhiyi ; Hou, Yanglong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3732-680b6a884f5d08b0c71d191af0a3fa976ad98c5ba65acf1cb1471744a11a242c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Antineoplastic drugs</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Aptamers</topic><topic>Aptamers, Nucleotide - chemistry</topic><topic>Aptamers, Nucleotide - pharmacology</topic><topic>Calcium</topic><topic>Calcium ions</topic><topic>calcium overload</topic><topic>Cancer</topic><topic>Cell death</topic><topic>Cell Line, Tumor</topic><topic>Chemotherapy</topic><topic>Cytoplasm</topic><topic>Doxorubicin</topic><topic>Doxorubicin - chemistry</topic><topic>Doxorubicin - pharmacology</topic><topic>Doxorubicin - therapeutic use</topic><topic>Fluorescence</topic><topic>Humans</topic><topic>ion interference therapy</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>Microenvironments</topic><topic>Molecular biology</topic><topic>nanomotors</topic><topic>Nanoparticles - chemistry</topic><topic>Nanotechnology devices</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Nucleic acids</topic><topic>Peroxides - chemistry</topic><topic>Peroxides - pharmacology</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Tumor cells</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yijie</creatorcontrib><creatorcontrib>Liu, Shikang</creatorcontrib><creatorcontrib>Liang, Jiarong</creatorcontrib><creatorcontrib>Wang, Zhiyi</creatorcontrib><creatorcontrib>Hou, Yanglong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yijie</au><au>Liu, Shikang</au><au>Liang, Jiarong</au><au>Wang, Zhiyi</au><au>Hou, Yanglong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐Propelled Nanomotor for Cancer Precision Combination Therapy</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>13</volume><issue>15</issue><spage>e2304212</spage><epage>n/a</epage><pages>e2304212-n/a</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>The emergence of nanomotor provides an innovative concept for tumor treatment strategies. Conventional chemotherapeutic agents for tumors exit various therapeutic constraints due to the unique microenvironment of the tumor itself. Calcium overload, the aberrant accumulation of free calcium ions in the cytoplasm, is a well‐recognized contributor to damage and even cell death in numerous cell types. Such undesired destructive processes can be a novel means applicable to cancer ion interference therapy. Herein, the chemotherapeutic drug doxorubicin (DOX) and calcium peroxide as the driving force into nanomotors through a facile and understandable experimental scheme are successfully assembled. The modification of nucleic acid aptamer and NIR‐II fluorescent molecules on its surface simultaneously strengthens both the active targeting and imaging capability of tumor loci. Therefore, by a comprehensive assessment of nanomotors both in vitro and in vivo experiments, CaO2/DOX@HPS‐IR‐1061‐AS1411 demonstrates superior killing effects on tumor cells, and the intracellular reactive oxygen species produced by nanomotors is verified by molecular biology experiments to induce apoptosis of tumor cells and further achieve tumor therapeutic effects. In this study, nanomotors containing the therapeutic drug doxorubicin and calcium peroxide as the driving force, whose modification of nucleic acid aptamers and fluorescent molecules enhances the active targeting and imaging, are successfully synthesized.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38259234</pmid><doi>10.1002/adhm.202304212</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0579-4594</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2024-06, Vol.13 (15), p.e2304212-n/a
issn 2192-2640
2192-2659
2192-2659
language eng
recordid cdi_proquest_miscellaneous_2917863563
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacology
Antineoplastic Agents - therapeutic use
Antineoplastic drugs
Apoptosis
Apoptosis - drug effects
Aptamers
Aptamers, Nucleotide - chemistry
Aptamers, Nucleotide - pharmacology
Calcium
Calcium ions
calcium overload
Cancer
Cell death
Cell Line, Tumor
Chemotherapy
Cytoplasm
Doxorubicin
Doxorubicin - chemistry
Doxorubicin - pharmacology
Doxorubicin - therapeutic use
Fluorescence
Humans
ion interference therapy
Mice
Mice, Inbred BALB C
Mice, Nude
Microenvironments
Molecular biology
nanomotors
Nanoparticles - chemistry
Nanotechnology devices
Neoplasms - drug therapy
Neoplasms - metabolism
Neoplasms - pathology
Nucleic acids
Peroxides - chemistry
Peroxides - pharmacology
Reactive oxygen species
Reactive Oxygen Species - metabolism
Tumor cells
Tumors
title Self‐Propelled Nanomotor for Cancer Precision Combination Therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A32%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90Propelled%20Nanomotor%20for%20Cancer%20Precision%20Combination%20Therapy&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Lu,%20Yijie&rft.date=2024-06-01&rft.volume=13&rft.issue=15&rft.spage=e2304212&rft.epage=n/a&rft.pages=e2304212-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202304212&rft_dat=%3Cproquest_cross%3E3067205482%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067205482&rft_id=info:pmid/38259234&rfr_iscdi=true