Self‐Propelled Nanomotor for Cancer Precision Combination Therapy
The emergence of nanomotor provides an innovative concept for tumor treatment strategies. Conventional chemotherapeutic agents for tumors exit various therapeutic constraints due to the unique microenvironment of the tumor itself. Calcium overload, the aberrant accumulation of free calcium ions in t...
Gespeichert in:
Veröffentlicht in: | Advanced healthcare materials 2024-06, Vol.13 (15), p.e2304212-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 15 |
container_start_page | e2304212 |
container_title | Advanced healthcare materials |
container_volume | 13 |
creator | Lu, Yijie Liu, Shikang Liang, Jiarong Wang, Zhiyi Hou, Yanglong |
description | The emergence of nanomotor provides an innovative concept for tumor treatment strategies. Conventional chemotherapeutic agents for tumors exit various therapeutic constraints due to the unique microenvironment of the tumor itself. Calcium overload, the aberrant accumulation of free calcium ions in the cytoplasm, is a well‐recognized contributor to damage and even cell death in numerous cell types. Such undesired destructive processes can be a novel means applicable to cancer ion interference therapy. Herein, the chemotherapeutic drug doxorubicin (DOX) and calcium peroxide as the driving force into nanomotors through a facile and understandable experimental scheme are successfully assembled. The modification of nucleic acid aptamer and NIR‐II fluorescent molecules on its surface simultaneously strengthens both the active targeting and imaging capability of tumor loci. Therefore, by a comprehensive assessment of nanomotors both in vitro and in vivo experiments, CaO2/DOX@HPS‐IR‐1061‐AS1411 demonstrates superior killing effects on tumor cells, and the intracellular reactive oxygen species produced by nanomotors is verified by molecular biology experiments to induce apoptosis of tumor cells and further achieve tumor therapeutic effects.
In this study, nanomotors containing the therapeutic drug doxorubicin and calcium peroxide as the driving force, whose modification of nucleic acid aptamers and fluorescent molecules enhances the active targeting and imaging, are successfully synthesized. |
doi_str_mv | 10.1002/adhm.202304212 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2917863563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067205482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3732-680b6a884f5d08b0c71d191af0a3fa976ad98c5ba65acf1cb1471744a11a242c3</originalsourceid><addsrcrecordid>eNqFkM1Kw0AUhQdRbKndupSCGzep85fJZFniT4WqBet6uJlMaEqSiTMN0p2P4DP6JKa0VnDjhcs9i-8eDgehc4LHBGN6DdmyGlNMGeaU0CPUpySmARVhfHzQHPfQ0PsV7kaEREhyinpM0jCmjPdR8mLK_Ovjc-5sY8rSZKMnqG1l19aN8m4TqLVxo7kzuvCFrUeJrdKihvVWL5bGQbM5Qyc5lN4M93eAXu9uF8k0mD3fPySTWaBZxGggJE4FSMnzMMMyxToiGYkJ5BhYDnEkIIulDlMQIeic6JTwiEScAyFAOdVsgK52vo2zb63xa1UVXnepoTa29YrGJJKChYJ16OUfdGVbV3fpFMMiojjkknbUeEdpZ713JleNKypwG0Ww2jastg2rQ8Pdw8Xetk0rkx3wnz47IN4B70VpNv_YqcnN9PHX_BvPzobA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067205482</pqid></control><display><type>article</type><title>Self‐Propelled Nanomotor for Cancer Precision Combination Therapy</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lu, Yijie ; Liu, Shikang ; Liang, Jiarong ; Wang, Zhiyi ; Hou, Yanglong</creator><creatorcontrib>Lu, Yijie ; Liu, Shikang ; Liang, Jiarong ; Wang, Zhiyi ; Hou, Yanglong</creatorcontrib><description>The emergence of nanomotor provides an innovative concept for tumor treatment strategies. Conventional chemotherapeutic agents for tumors exit various therapeutic constraints due to the unique microenvironment of the tumor itself. Calcium overload, the aberrant accumulation of free calcium ions in the cytoplasm, is a well‐recognized contributor to damage and even cell death in numerous cell types. Such undesired destructive processes can be a novel means applicable to cancer ion interference therapy. Herein, the chemotherapeutic drug doxorubicin (DOX) and calcium peroxide as the driving force into nanomotors through a facile and understandable experimental scheme are successfully assembled. The modification of nucleic acid aptamer and NIR‐II fluorescent molecules on its surface simultaneously strengthens both the active targeting and imaging capability of tumor loci. Therefore, by a comprehensive assessment of nanomotors both in vitro and in vivo experiments, CaO2/DOX@HPS‐IR‐1061‐AS1411 demonstrates superior killing effects on tumor cells, and the intracellular reactive oxygen species produced by nanomotors is verified by molecular biology experiments to induce apoptosis of tumor cells and further achieve tumor therapeutic effects.
In this study, nanomotors containing the therapeutic drug doxorubicin and calcium peroxide as the driving force, whose modification of nucleic acid aptamers and fluorescent molecules enhances the active targeting and imaging, are successfully synthesized.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202304212</identifier><identifier>PMID: 38259234</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Antineoplastic drugs ; Apoptosis ; Apoptosis - drug effects ; Aptamers ; Aptamers, Nucleotide - chemistry ; Aptamers, Nucleotide - pharmacology ; Calcium ; Calcium ions ; calcium overload ; Cancer ; Cell death ; Cell Line, Tumor ; Chemotherapy ; Cytoplasm ; Doxorubicin ; Doxorubicin - chemistry ; Doxorubicin - pharmacology ; Doxorubicin - therapeutic use ; Fluorescence ; Humans ; ion interference therapy ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Microenvironments ; Molecular biology ; nanomotors ; Nanoparticles - chemistry ; Nanotechnology devices ; Neoplasms - drug therapy ; Neoplasms - metabolism ; Neoplasms - pathology ; Nucleic acids ; Peroxides - chemistry ; Peroxides - pharmacology ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Tumor cells ; Tumors</subject><ispartof>Advanced healthcare materials, 2024-06, Vol.13 (15), p.e2304212-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3732-680b6a884f5d08b0c71d191af0a3fa976ad98c5ba65acf1cb1471744a11a242c3</citedby><cites>FETCH-LOGICAL-c3732-680b6a884f5d08b0c71d191af0a3fa976ad98c5ba65acf1cb1471744a11a242c3</cites><orcidid>0000-0003-0579-4594</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.202304212$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.202304212$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38259234$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Yijie</creatorcontrib><creatorcontrib>Liu, Shikang</creatorcontrib><creatorcontrib>Liang, Jiarong</creatorcontrib><creatorcontrib>Wang, Zhiyi</creatorcontrib><creatorcontrib>Hou, Yanglong</creatorcontrib><title>Self‐Propelled Nanomotor for Cancer Precision Combination Therapy</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>The emergence of nanomotor provides an innovative concept for tumor treatment strategies. Conventional chemotherapeutic agents for tumors exit various therapeutic constraints due to the unique microenvironment of the tumor itself. Calcium overload, the aberrant accumulation of free calcium ions in the cytoplasm, is a well‐recognized contributor to damage and even cell death in numerous cell types. Such undesired destructive processes can be a novel means applicable to cancer ion interference therapy. Herein, the chemotherapeutic drug doxorubicin (DOX) and calcium peroxide as the driving force into nanomotors through a facile and understandable experimental scheme are successfully assembled. The modification of nucleic acid aptamer and NIR‐II fluorescent molecules on its surface simultaneously strengthens both the active targeting and imaging capability of tumor loci. Therefore, by a comprehensive assessment of nanomotors both in vitro and in vivo experiments, CaO2/DOX@HPS‐IR‐1061‐AS1411 demonstrates superior killing effects on tumor cells, and the intracellular reactive oxygen species produced by nanomotors is verified by molecular biology experiments to induce apoptosis of tumor cells and further achieve tumor therapeutic effects.
In this study, nanomotors containing the therapeutic drug doxorubicin and calcium peroxide as the driving force, whose modification of nucleic acid aptamers and fluorescent molecules enhances the active targeting and imaging, are successfully synthesized.</description><subject>Animals</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Antineoplastic drugs</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Aptamers</subject><subject>Aptamers, Nucleotide - chemistry</subject><subject>Aptamers, Nucleotide - pharmacology</subject><subject>Calcium</subject><subject>Calcium ions</subject><subject>calcium overload</subject><subject>Cancer</subject><subject>Cell death</subject><subject>Cell Line, Tumor</subject><subject>Chemotherapy</subject><subject>Cytoplasm</subject><subject>Doxorubicin</subject><subject>Doxorubicin - chemistry</subject><subject>Doxorubicin - pharmacology</subject><subject>Doxorubicin - therapeutic use</subject><subject>Fluorescence</subject><subject>Humans</subject><subject>ion interference therapy</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>Microenvironments</subject><subject>Molecular biology</subject><subject>nanomotors</subject><subject>Nanoparticles - chemistry</subject><subject>Nanotechnology devices</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Nucleic acids</subject><subject>Peroxides - chemistry</subject><subject>Peroxides - pharmacology</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Tumor cells</subject><subject>Tumors</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1Kw0AUhQdRbKndupSCGzep85fJZFniT4WqBet6uJlMaEqSiTMN0p2P4DP6JKa0VnDjhcs9i-8eDgehc4LHBGN6DdmyGlNMGeaU0CPUpySmARVhfHzQHPfQ0PsV7kaEREhyinpM0jCmjPdR8mLK_Ovjc-5sY8rSZKMnqG1l19aN8m4TqLVxo7kzuvCFrUeJrdKihvVWL5bGQbM5Qyc5lN4M93eAXu9uF8k0mD3fPySTWaBZxGggJE4FSMnzMMMyxToiGYkJ5BhYDnEkIIulDlMQIeic6JTwiEScAyFAOdVsgK52vo2zb63xa1UVXnepoTa29YrGJJKChYJ16OUfdGVbV3fpFMMiojjkknbUeEdpZ713JleNKypwG0Ww2jastg2rQ8Pdw8Xetk0rkx3wnz47IN4B70VpNv_YqcnN9PHX_BvPzobA</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Lu, Yijie</creator><creator>Liu, Shikang</creator><creator>Liang, Jiarong</creator><creator>Wang, Zhiyi</creator><creator>Hou, Yanglong</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0579-4594</orcidid></search><sort><creationdate>20240601</creationdate><title>Self‐Propelled Nanomotor for Cancer Precision Combination Therapy</title><author>Lu, Yijie ; Liu, Shikang ; Liang, Jiarong ; Wang, Zhiyi ; Hou, Yanglong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3732-680b6a884f5d08b0c71d191af0a3fa976ad98c5ba65acf1cb1471744a11a242c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Antineoplastic drugs</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Aptamers</topic><topic>Aptamers, Nucleotide - chemistry</topic><topic>Aptamers, Nucleotide - pharmacology</topic><topic>Calcium</topic><topic>Calcium ions</topic><topic>calcium overload</topic><topic>Cancer</topic><topic>Cell death</topic><topic>Cell Line, Tumor</topic><topic>Chemotherapy</topic><topic>Cytoplasm</topic><topic>Doxorubicin</topic><topic>Doxorubicin - chemistry</topic><topic>Doxorubicin - pharmacology</topic><topic>Doxorubicin - therapeutic use</topic><topic>Fluorescence</topic><topic>Humans</topic><topic>ion interference therapy</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>Microenvironments</topic><topic>Molecular biology</topic><topic>nanomotors</topic><topic>Nanoparticles - chemistry</topic><topic>Nanotechnology devices</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Nucleic acids</topic><topic>Peroxides - chemistry</topic><topic>Peroxides - pharmacology</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Tumor cells</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yijie</creatorcontrib><creatorcontrib>Liu, Shikang</creatorcontrib><creatorcontrib>Liang, Jiarong</creatorcontrib><creatorcontrib>Wang, Zhiyi</creatorcontrib><creatorcontrib>Hou, Yanglong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yijie</au><au>Liu, Shikang</au><au>Liang, Jiarong</au><au>Wang, Zhiyi</au><au>Hou, Yanglong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐Propelled Nanomotor for Cancer Precision Combination Therapy</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>13</volume><issue>15</issue><spage>e2304212</spage><epage>n/a</epage><pages>e2304212-n/a</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>The emergence of nanomotor provides an innovative concept for tumor treatment strategies. Conventional chemotherapeutic agents for tumors exit various therapeutic constraints due to the unique microenvironment of the tumor itself. Calcium overload, the aberrant accumulation of free calcium ions in the cytoplasm, is a well‐recognized contributor to damage and even cell death in numerous cell types. Such undesired destructive processes can be a novel means applicable to cancer ion interference therapy. Herein, the chemotherapeutic drug doxorubicin (DOX) and calcium peroxide as the driving force into nanomotors through a facile and understandable experimental scheme are successfully assembled. The modification of nucleic acid aptamer and NIR‐II fluorescent molecules on its surface simultaneously strengthens both the active targeting and imaging capability of tumor loci. Therefore, by a comprehensive assessment of nanomotors both in vitro and in vivo experiments, CaO2/DOX@HPS‐IR‐1061‐AS1411 demonstrates superior killing effects on tumor cells, and the intracellular reactive oxygen species produced by nanomotors is verified by molecular biology experiments to induce apoptosis of tumor cells and further achieve tumor therapeutic effects.
In this study, nanomotors containing the therapeutic drug doxorubicin and calcium peroxide as the driving force, whose modification of nucleic acid aptamers and fluorescent molecules enhances the active targeting and imaging, are successfully synthesized.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38259234</pmid><doi>10.1002/adhm.202304212</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0579-4594</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2024-06, Vol.13 (15), p.e2304212-n/a |
issn | 2192-2640 2192-2659 2192-2659 |
language | eng |
recordid | cdi_proquest_miscellaneous_2917863563 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use Antineoplastic drugs Apoptosis Apoptosis - drug effects Aptamers Aptamers, Nucleotide - chemistry Aptamers, Nucleotide - pharmacology Calcium Calcium ions calcium overload Cancer Cell death Cell Line, Tumor Chemotherapy Cytoplasm Doxorubicin Doxorubicin - chemistry Doxorubicin - pharmacology Doxorubicin - therapeutic use Fluorescence Humans ion interference therapy Mice Mice, Inbred BALB C Mice, Nude Microenvironments Molecular biology nanomotors Nanoparticles - chemistry Nanotechnology devices Neoplasms - drug therapy Neoplasms - metabolism Neoplasms - pathology Nucleic acids Peroxides - chemistry Peroxides - pharmacology Reactive oxygen species Reactive Oxygen Species - metabolism Tumor cells Tumors |
title | Self‐Propelled Nanomotor for Cancer Precision Combination Therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A32%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90Propelled%20Nanomotor%20for%20Cancer%20Precision%20Combination%20Therapy&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Lu,%20Yijie&rft.date=2024-06-01&rft.volume=13&rft.issue=15&rft.spage=e2304212&rft.epage=n/a&rft.pages=e2304212-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202304212&rft_dat=%3Cproquest_cross%3E3067205482%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067205482&rft_id=info:pmid/38259234&rfr_iscdi=true |