A Slow Strain Rate Test Experiment to Evaluate the Characteristics of High-Strength Al-Mg Alloy for Application in Ships

Recently, there has been increased interest in using aluminum alloys in ship construction instead of fiber-reinforced plastic (FRP). This is because aluminum alloy ships are faster, have a greater load capacity, and are easier to recycle than FRP ships. In this study, we investigated the mechanical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials Science Forum 2006-03, Vol.510-511, p.162-165
Hauptverfasser: Kim, Seong Jong, Jang, Seok Ki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, there has been increased interest in using aluminum alloys in ship construction instead of fiber-reinforced plastic (FRP). This is because aluminum alloy ships are faster, have a greater load capacity, and are easier to recycle than FRP ships. In this study, we investigated the mechanical and electrochemical properties of aluminum alloys using the slow strain rate and potentiostatic tests under various potential conditions. The optimum protection potential range with regards to hydrogen embrittlement and stress corrosion cracking was determined to lie between -1.5 and -0.7 V (SSCE). These results can be used as reference data for ship design.
ISSN:0255-5476
1662-9752
1662-9752
DOI:10.4028/www.scientific.net/MSF.510-511.162