Nanocrystalline and Amorphous Calcium Carbonate from Waste Seashells by Ball Milling Mechanochemistry Processes
Nanocrystalline calcium carbonate (CaCO3) and amorphous CaCO3 (ACC) are materials of increasing technological interest. Nowadays, they are mainly synthetically produced by wet reactions using CaCO3 reagents in the presence of stabilizers. However, it has recently been discovered that ACC can be prod...
Gespeichert in:
Veröffentlicht in: | Crystal growth & design 2024-01, Vol.24 (2), p.657-668 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 668 |
---|---|
container_issue | 2 |
container_start_page | 657 |
container_title | Crystal growth & design |
container_volume | 24 |
creator | Marchini, Chiara Triunfo, Carla Greggio, Nicolas Fermani, Simona Montroni, Devis Migliori, Andrea Gradone, Alessandro Goffredo, Stefano Maoloni, Gabriele Gómez Morales, Jaime Cölfen, Helmut Falini, Giuseppe |
description | Nanocrystalline calcium carbonate (CaCO3) and amorphous CaCO3 (ACC) are materials of increasing technological interest. Nowadays, they are mainly synthetically produced by wet reactions using CaCO3 reagents in the presence of stabilizers. However, it has recently been discovered that ACC can be produced by ball milling calcite. Calcite and/or aragonite are the mineral phases of mollusk shells, which are formed from ACC precursors. Here, we investigated the possibility to convert, on a potentially industrial scale, the biogenic CaCO3 (bCC) from waste mollusk seashells into nanocrystalline CaCO3 and ACC. Waste seashells from the aquaculture species, namely oysters (Crassostrea gigas, low-Mg calcite), scallops (Pecten jacobaeus, medium-Mg calcite), and clams (Chamelea gallina, aragonite) were used. The ball milling process was carried out by using different dispersing solvents and potential ACC stabilizers. Structural, morphological, and spectroscopic characterization techniques were used. The results showed that the mechanochemical process produced a reduction of the crystalline domain sizes and formation of ACC domains, which coexisted in microsized aggregates. Interestingly, bCC behaved differently from the geogenic CaCO3 (gCC), and upon long milling times (24 h), the ACC reconverted into crystalline phases. The aging in diverse environments of mechanochemically treated bCC produced a mixture of calcite and aragonite in a species-specific mass ratio, while the ACC from gCC converted only into calcite. In conclusion, this research showed that bCC can produce nanocrystalline CaCO3 and ACC composites or mixtures having species-specific features. These materials can enlarge the already wide fields of applications of CaCO3, which span from medical to material science. |
doi_str_mv | 10.1021/acs.cgd.3c01007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2917557904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917557904</sourcerecordid><originalsourceid>FETCH-LOGICAL-a328t-551f443134ef4b023d5daef2c207513b87cb8461068a92f5031e18d4ddc92f0e3</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRbK2evckeBUm7n832WItf0Kqg4jFsNpM2JcnW3eSQ_94Nbb15mhn4vce8h9A1JWNKGJ1o48dmnY25IZSQ-AQNqWQqiiWRp8ddKD5AF95vSSCmnJ-jAVcsEEIMkX3VtTWu840uy6IGrOsMzyvrdhvberzQpSnaKkyX2lo3gHNnK_ytfVg_QPsNlKXHaYfvgx6vit5kjVdgNr3vBqrCN67D784a8B78JTrLdenh6jBH6Ovx4XPxHC3fnl4W82WkOVNNJCXNheCUC8hFShjPZKYhZ4aRWFKeqtikSkwpmSo9Y7kknAJVmcgyE04CfIRu9747Z39a8E0SPjHhWV1DCJawGY2ljGdEBHSyR42z3jvIk50rKu26hJKkbzkJLSeh5eTQclDcHMzbtILsjz_WGoC7PdArt7Z1dcj6r90vbuWI0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917557904</pqid></control><display><type>article</type><title>Nanocrystalline and Amorphous Calcium Carbonate from Waste Seashells by Ball Milling Mechanochemistry Processes</title><source>ACS Publications</source><creator>Marchini, Chiara ; Triunfo, Carla ; Greggio, Nicolas ; Fermani, Simona ; Montroni, Devis ; Migliori, Andrea ; Gradone, Alessandro ; Goffredo, Stefano ; Maoloni, Gabriele ; Gómez Morales, Jaime ; Cölfen, Helmut ; Falini, Giuseppe</creator><creatorcontrib>Marchini, Chiara ; Triunfo, Carla ; Greggio, Nicolas ; Fermani, Simona ; Montroni, Devis ; Migliori, Andrea ; Gradone, Alessandro ; Goffredo, Stefano ; Maoloni, Gabriele ; Gómez Morales, Jaime ; Cölfen, Helmut ; Falini, Giuseppe</creatorcontrib><description>Nanocrystalline calcium carbonate (CaCO3) and amorphous CaCO3 (ACC) are materials of increasing technological interest. Nowadays, they are mainly synthetically produced by wet reactions using CaCO3 reagents in the presence of stabilizers. However, it has recently been discovered that ACC can be produced by ball milling calcite. Calcite and/or aragonite are the mineral phases of mollusk shells, which are formed from ACC precursors. Here, we investigated the possibility to convert, on a potentially industrial scale, the biogenic CaCO3 (bCC) from waste mollusk seashells into nanocrystalline CaCO3 and ACC. Waste seashells from the aquaculture species, namely oysters (Crassostrea gigas, low-Mg calcite), scallops (Pecten jacobaeus, medium-Mg calcite), and clams (Chamelea gallina, aragonite) were used. The ball milling process was carried out by using different dispersing solvents and potential ACC stabilizers. Structural, morphological, and spectroscopic characterization techniques were used. The results showed that the mechanochemical process produced a reduction of the crystalline domain sizes and formation of ACC domains, which coexisted in microsized aggregates. Interestingly, bCC behaved differently from the geogenic CaCO3 (gCC), and upon long milling times (24 h), the ACC reconverted into crystalline phases. The aging in diverse environments of mechanochemically treated bCC produced a mixture of calcite and aragonite in a species-specific mass ratio, while the ACC from gCC converted only into calcite. In conclusion, this research showed that bCC can produce nanocrystalline CaCO3 and ACC composites or mixtures having species-specific features. These materials can enlarge the already wide fields of applications of CaCO3, which span from medical to material science.</description><identifier>ISSN: 1528-7483</identifier><identifier>EISSN: 1528-7505</identifier><identifier>DOI: 10.1021/acs.cgd.3c01007</identifier><identifier>PMID: 38250544</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Crystal growth & design, 2024-01, Vol.24 (2), p.657-668</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a328t-551f443134ef4b023d5daef2c207513b87cb8461068a92f5031e18d4ddc92f0e3</cites><orcidid>0000-0002-1148-0308 ; 0000-0002-1351-716X ; 0000-0002-9395-7797 ; 0000-0002-2367-3721</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.cgd.3c01007$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.cgd.3c01007$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38250544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marchini, Chiara</creatorcontrib><creatorcontrib>Triunfo, Carla</creatorcontrib><creatorcontrib>Greggio, Nicolas</creatorcontrib><creatorcontrib>Fermani, Simona</creatorcontrib><creatorcontrib>Montroni, Devis</creatorcontrib><creatorcontrib>Migliori, Andrea</creatorcontrib><creatorcontrib>Gradone, Alessandro</creatorcontrib><creatorcontrib>Goffredo, Stefano</creatorcontrib><creatorcontrib>Maoloni, Gabriele</creatorcontrib><creatorcontrib>Gómez Morales, Jaime</creatorcontrib><creatorcontrib>Cölfen, Helmut</creatorcontrib><creatorcontrib>Falini, Giuseppe</creatorcontrib><title>Nanocrystalline and Amorphous Calcium Carbonate from Waste Seashells by Ball Milling Mechanochemistry Processes</title><title>Crystal growth & design</title><addtitle>Cryst. Growth Des</addtitle><description>Nanocrystalline calcium carbonate (CaCO3) and amorphous CaCO3 (ACC) are materials of increasing technological interest. Nowadays, they are mainly synthetically produced by wet reactions using CaCO3 reagents in the presence of stabilizers. However, it has recently been discovered that ACC can be produced by ball milling calcite. Calcite and/or aragonite are the mineral phases of mollusk shells, which are formed from ACC precursors. Here, we investigated the possibility to convert, on a potentially industrial scale, the biogenic CaCO3 (bCC) from waste mollusk seashells into nanocrystalline CaCO3 and ACC. Waste seashells from the aquaculture species, namely oysters (Crassostrea gigas, low-Mg calcite), scallops (Pecten jacobaeus, medium-Mg calcite), and clams (Chamelea gallina, aragonite) were used. The ball milling process was carried out by using different dispersing solvents and potential ACC stabilizers. Structural, morphological, and spectroscopic characterization techniques were used. The results showed that the mechanochemical process produced a reduction of the crystalline domain sizes and formation of ACC domains, which coexisted in microsized aggregates. Interestingly, bCC behaved differently from the geogenic CaCO3 (gCC), and upon long milling times (24 h), the ACC reconverted into crystalline phases. The aging in diverse environments of mechanochemically treated bCC produced a mixture of calcite and aragonite in a species-specific mass ratio, while the ACC from gCC converted only into calcite. In conclusion, this research showed that bCC can produce nanocrystalline CaCO3 and ACC composites or mixtures having species-specific features. These materials can enlarge the already wide fields of applications of CaCO3, which span from medical to material science.</description><issn>1528-7483</issn><issn>1528-7505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxRdRbK2evckeBUm7n832WItf0Kqg4jFsNpM2JcnW3eSQ_94Nbb15mhn4vce8h9A1JWNKGJ1o48dmnY25IZSQ-AQNqWQqiiWRp8ddKD5AF95vSSCmnJ-jAVcsEEIMkX3VtTWu840uy6IGrOsMzyvrdhvberzQpSnaKkyX2lo3gHNnK_ytfVg_QPsNlKXHaYfvgx6vit5kjVdgNr3vBqrCN67D784a8B78JTrLdenh6jBH6Ovx4XPxHC3fnl4W82WkOVNNJCXNheCUC8hFShjPZKYhZ4aRWFKeqtikSkwpmSo9Y7kknAJVmcgyE04CfIRu9747Z39a8E0SPjHhWV1DCJawGY2ljGdEBHSyR42z3jvIk50rKu26hJKkbzkJLSeh5eTQclDcHMzbtILsjz_WGoC7PdArt7Z1dcj6r90vbuWI0g</recordid><startdate>20240117</startdate><enddate>20240117</enddate><creator>Marchini, Chiara</creator><creator>Triunfo, Carla</creator><creator>Greggio, Nicolas</creator><creator>Fermani, Simona</creator><creator>Montroni, Devis</creator><creator>Migliori, Andrea</creator><creator>Gradone, Alessandro</creator><creator>Goffredo, Stefano</creator><creator>Maoloni, Gabriele</creator><creator>Gómez Morales, Jaime</creator><creator>Cölfen, Helmut</creator><creator>Falini, Giuseppe</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1148-0308</orcidid><orcidid>https://orcid.org/0000-0002-1351-716X</orcidid><orcidid>https://orcid.org/0000-0002-9395-7797</orcidid><orcidid>https://orcid.org/0000-0002-2367-3721</orcidid></search><sort><creationdate>20240117</creationdate><title>Nanocrystalline and Amorphous Calcium Carbonate from Waste Seashells by Ball Milling Mechanochemistry Processes</title><author>Marchini, Chiara ; Triunfo, Carla ; Greggio, Nicolas ; Fermani, Simona ; Montroni, Devis ; Migliori, Andrea ; Gradone, Alessandro ; Goffredo, Stefano ; Maoloni, Gabriele ; Gómez Morales, Jaime ; Cölfen, Helmut ; Falini, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a328t-551f443134ef4b023d5daef2c207513b87cb8461068a92f5031e18d4ddc92f0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marchini, Chiara</creatorcontrib><creatorcontrib>Triunfo, Carla</creatorcontrib><creatorcontrib>Greggio, Nicolas</creatorcontrib><creatorcontrib>Fermani, Simona</creatorcontrib><creatorcontrib>Montroni, Devis</creatorcontrib><creatorcontrib>Migliori, Andrea</creatorcontrib><creatorcontrib>Gradone, Alessandro</creatorcontrib><creatorcontrib>Goffredo, Stefano</creatorcontrib><creatorcontrib>Maoloni, Gabriele</creatorcontrib><creatorcontrib>Gómez Morales, Jaime</creatorcontrib><creatorcontrib>Cölfen, Helmut</creatorcontrib><creatorcontrib>Falini, Giuseppe</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Crystal growth & design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marchini, Chiara</au><au>Triunfo, Carla</au><au>Greggio, Nicolas</au><au>Fermani, Simona</au><au>Montroni, Devis</au><au>Migliori, Andrea</au><au>Gradone, Alessandro</au><au>Goffredo, Stefano</au><au>Maoloni, Gabriele</au><au>Gómez Morales, Jaime</au><au>Cölfen, Helmut</au><au>Falini, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanocrystalline and Amorphous Calcium Carbonate from Waste Seashells by Ball Milling Mechanochemistry Processes</atitle><jtitle>Crystal growth & design</jtitle><addtitle>Cryst. Growth Des</addtitle><date>2024-01-17</date><risdate>2024</risdate><volume>24</volume><issue>2</issue><spage>657</spage><epage>668</epage><pages>657-668</pages><issn>1528-7483</issn><eissn>1528-7505</eissn><abstract>Nanocrystalline calcium carbonate (CaCO3) and amorphous CaCO3 (ACC) are materials of increasing technological interest. Nowadays, they are mainly synthetically produced by wet reactions using CaCO3 reagents in the presence of stabilizers. However, it has recently been discovered that ACC can be produced by ball milling calcite. Calcite and/or aragonite are the mineral phases of mollusk shells, which are formed from ACC precursors. Here, we investigated the possibility to convert, on a potentially industrial scale, the biogenic CaCO3 (bCC) from waste mollusk seashells into nanocrystalline CaCO3 and ACC. Waste seashells from the aquaculture species, namely oysters (Crassostrea gigas, low-Mg calcite), scallops (Pecten jacobaeus, medium-Mg calcite), and clams (Chamelea gallina, aragonite) were used. The ball milling process was carried out by using different dispersing solvents and potential ACC stabilizers. Structural, morphological, and spectroscopic characterization techniques were used. The results showed that the mechanochemical process produced a reduction of the crystalline domain sizes and formation of ACC domains, which coexisted in microsized aggregates. Interestingly, bCC behaved differently from the geogenic CaCO3 (gCC), and upon long milling times (24 h), the ACC reconverted into crystalline phases. The aging in diverse environments of mechanochemically treated bCC produced a mixture of calcite and aragonite in a species-specific mass ratio, while the ACC from gCC converted only into calcite. In conclusion, this research showed that bCC can produce nanocrystalline CaCO3 and ACC composites or mixtures having species-specific features. These materials can enlarge the already wide fields of applications of CaCO3, which span from medical to material science.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38250544</pmid><doi>10.1021/acs.cgd.3c01007</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1148-0308</orcidid><orcidid>https://orcid.org/0000-0002-1351-716X</orcidid><orcidid>https://orcid.org/0000-0002-9395-7797</orcidid><orcidid>https://orcid.org/0000-0002-2367-3721</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1528-7483 |
ispartof | Crystal growth & design, 2024-01, Vol.24 (2), p.657-668 |
issn | 1528-7483 1528-7505 |
language | eng |
recordid | cdi_proquest_miscellaneous_2917557904 |
source | ACS Publications |
title | Nanocrystalline and Amorphous Calcium Carbonate from Waste Seashells by Ball Milling Mechanochemistry Processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A34%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanocrystalline%20and%20Amorphous%20Calcium%20Carbonate%20from%20Waste%20Seashells%20by%20Ball%20Milling%20Mechanochemistry%20Processes&rft.jtitle=Crystal%20growth%20&%20design&rft.au=Marchini,%20Chiara&rft.date=2024-01-17&rft.volume=24&rft.issue=2&rft.spage=657&rft.epage=668&rft.pages=657-668&rft.issn=1528-7483&rft.eissn=1528-7505&rft_id=info:doi/10.1021/acs.cgd.3c01007&rft_dat=%3Cproquest_cross%3E2917557904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917557904&rft_id=info:pmid/38250544&rfr_iscdi=true |