Transitioning from static to suspension culture system for large‐scale production of xeno‐free extracellular vesicles derived from mesenchymal stromal cells

Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) have shown increasing therapeutic potential in the last years. However, large production of EV is required for therapeutic purposes. Thereby, scaling up MSC cultivation in bioreactors is essential to allow culture parameters...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology progress 2024-05, Vol.40 (3), p.e3419-n/a
Hauptverfasser: Santos, Natália Cristine Dias, Bruzadelle‐Vieira, Paula, Cássia Noronha, Nádia, Mizukami‐Martins, Amanda, Orellana, Maristela Delgado, Bentley, Maria Vitória L. B., Covas, Dimas Tadeu, Swiech, Kamilla, Malmegrim, Kelen Cristina Ribeiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page e3419
container_title Biotechnology progress
container_volume 40
creator Santos, Natália Cristine Dias
Bruzadelle‐Vieira, Paula
Cássia Noronha, Nádia
Mizukami‐Martins, Amanda
Orellana, Maristela Delgado
Bentley, Maria Vitória L. B.
Covas, Dimas Tadeu
Swiech, Kamilla
Malmegrim, Kelen Cristina Ribeiro
description Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) have shown increasing therapeutic potential in the last years. However, large production of EV is required for therapeutic purposes. Thereby, scaling up MSC cultivation in bioreactors is essential to allow culture parameters monitoring. In this study, we reported the establishment of a scalable bioprocess to produce MSC‐EV in suspension cultures using spinner flasks and human collagen‐coated microcarriers (3D culture system). We compared the EV production in this 3D culture system with the standard static culture using T‐flasks (2D culture system). The EV produced in both systems were characterized and quantify by western blotting and nanoparticle tracking analysis. The presence of the typical protein markers CD9, CD63, and CD81 was confirmed by western blotting analyses for EV produced in both culture systems. The cell fold‐increase was 5.7‐fold for the 3D culture system and 4.6‐fold for the 2D culture system, signifying a fold‐change of 1.2 (calculated as the ratio of fold‐increase 3D to fold‐increase 2D). Furthermore, it should be noted that the total cell production in the spinner flask cultures was 4.8 times higher than that in T‐flask cultures. The total cell production in the spinner flask cultures was 5.2‐fold higher than that in T‐flask cultures. While the EV specific production (particles/cell) in T‐flask cultures (4.40 ± 1.21 × 108 particles/mL, p 
doi_str_mv 10.1002/btpr.3419
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2917554704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917554704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3139-47888ec71659fcbaf7cd408d0cf8957bc190d31d9dc1a9786b1c1d1cf45d30183</originalsourceid><addsrcrecordid>eNp1kU9u1TAQhy0Eoo_CggsgS2xgkdYTJ7G9hIp_UiUQeqwjxx6XVEn88CSlb8cROELP1pPg8AoLJFYjeb75ZqwfY09BnIAQ5Wk379KJrMDcYxuoS1E0Qsr7bKNV3RTKSH3EHhFdCiG0aMqH7EjqslJQyg272SY7UT_3ceqnCx5SHDnNdu4dnyOnhXaY23HibhnmJSGnPc048hATH2y6wNsfP8nZAfkuRb-4VcRj4Nc4xdwKCZHj9Zysw2FY8gS_QurdgMQ9pv4K_WHniIST-7of7ZD355dc1xF6zB4EOxA-uavH7MvbN9uz98X5x3cfzl6dF06CNEWltNboFDS1Ca6zQTlfCe2FC9rUqnNghJfgjXdgjdJNBw48uFDVXgrQ8pi9OHjzP74tSHM79rReYCeMC7WlAVXXlRJVRp__g17GJU35ulYKBRWAMk2mXh4olyJRwtDuUj_atG9BtGts7Rpbu8aW2Wd3xqUb0f8l_-SUgdMD8L0fcP9_U_t6--nzb-UvNVmosw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3071411796</pqid></control><display><type>article</type><title>Transitioning from static to suspension culture system for large‐scale production of xeno‐free extracellular vesicles derived from mesenchymal stromal cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Santos, Natália Cristine Dias ; Bruzadelle‐Vieira, Paula ; Cássia Noronha, Nádia ; Mizukami‐Martins, Amanda ; Orellana, Maristela Delgado ; Bentley, Maria Vitória L. B. ; Covas, Dimas Tadeu ; Swiech, Kamilla ; Malmegrim, Kelen Cristina Ribeiro</creator><creatorcontrib>Santos, Natália Cristine Dias ; Bruzadelle‐Vieira, Paula ; Cássia Noronha, Nádia ; Mizukami‐Martins, Amanda ; Orellana, Maristela Delgado ; Bentley, Maria Vitória L. B. ; Covas, Dimas Tadeu ; Swiech, Kamilla ; Malmegrim, Kelen Cristina Ribeiro</creatorcontrib><description>Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) have shown increasing therapeutic potential in the last years. However, large production of EV is required for therapeutic purposes. Thereby, scaling up MSC cultivation in bioreactors is essential to allow culture parameters monitoring. In this study, we reported the establishment of a scalable bioprocess to produce MSC‐EV in suspension cultures using spinner flasks and human collagen‐coated microcarriers (3D culture system). We compared the EV production in this 3D culture system with the standard static culture using T‐flasks (2D culture system). The EV produced in both systems were characterized and quantify by western blotting and nanoparticle tracking analysis. The presence of the typical protein markers CD9, CD63, and CD81 was confirmed by western blotting analyses for EV produced in both culture systems. The cell fold‐increase was 5.7‐fold for the 3D culture system and 4.6‐fold for the 2D culture system, signifying a fold‐change of 1.2 (calculated as the ratio of fold‐increase 3D to fold‐increase 2D). Furthermore, it should be noted that the total cell production in the spinner flask cultures was 4.8 times higher than that in T‐flask cultures. The total cell production in the spinner flask cultures was 5.2‐fold higher than that in T‐flask cultures. While the EV specific production (particles/cell) in T‐flask cultures (4.40 ± 1.21 × 108 particles/mL, p &lt; 0.05) was higher compared to spinner flask cultures (2.10 ± 0.04 × 108 particles/mL, p &lt; 0.05), the spinner flask culture system offers scalability, making it capable of producing enough MSC‐EV at a large scale for clinical applications. Therefore, we concluded that 3D culture system evaluated here serves as an efficient transitional platform that enables the scaling up of MSC‐EV production for therapeutic purposes by utilizing stirred tank bioreactors and maintaining xeno‐free conditions.</description><identifier>ISSN: 8756-7938</identifier><identifier>ISSN: 1520-6033</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1002/btpr.3419</identifier><identifier>PMID: 38247123</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>bioprocess ; Bioreactors ; CD63 antigen ; CD81 antigen ; CD9 antigen ; Cell culture ; Culture ; Extracellular vesicles ; Flasks ; Mesenchymal stem cells ; mesenchymal stromal cells ; Nanoparticles ; Protozoa ; Scaling up ; static culture ; Stromal cells ; Suspension culture ; Therapeutic applications ; Vesicles ; Western blotting</subject><ispartof>Biotechnology progress, 2024-05, Vol.40 (3), p.e3419-n/a</ispartof><rights>2024 American Institute of Chemical Engineers.</rights><rights>2024 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3139-47888ec71659fcbaf7cd408d0cf8957bc190d31d9dc1a9786b1c1d1cf45d30183</cites><orcidid>0000-0002-9693-6289 ; 0000-0002-9303-0086 ; 0000-0003-2149-0101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbtpr.3419$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbtpr.3419$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38247123$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santos, Natália Cristine Dias</creatorcontrib><creatorcontrib>Bruzadelle‐Vieira, Paula</creatorcontrib><creatorcontrib>Cássia Noronha, Nádia</creatorcontrib><creatorcontrib>Mizukami‐Martins, Amanda</creatorcontrib><creatorcontrib>Orellana, Maristela Delgado</creatorcontrib><creatorcontrib>Bentley, Maria Vitória L. B.</creatorcontrib><creatorcontrib>Covas, Dimas Tadeu</creatorcontrib><creatorcontrib>Swiech, Kamilla</creatorcontrib><creatorcontrib>Malmegrim, Kelen Cristina Ribeiro</creatorcontrib><title>Transitioning from static to suspension culture system for large‐scale production of xeno‐free extracellular vesicles derived from mesenchymal stromal cells</title><title>Biotechnology progress</title><addtitle>Biotechnol Prog</addtitle><description>Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) have shown increasing therapeutic potential in the last years. However, large production of EV is required for therapeutic purposes. Thereby, scaling up MSC cultivation in bioreactors is essential to allow culture parameters monitoring. In this study, we reported the establishment of a scalable bioprocess to produce MSC‐EV in suspension cultures using spinner flasks and human collagen‐coated microcarriers (3D culture system). We compared the EV production in this 3D culture system with the standard static culture using T‐flasks (2D culture system). The EV produced in both systems were characterized and quantify by western blotting and nanoparticle tracking analysis. The presence of the typical protein markers CD9, CD63, and CD81 was confirmed by western blotting analyses for EV produced in both culture systems. The cell fold‐increase was 5.7‐fold for the 3D culture system and 4.6‐fold for the 2D culture system, signifying a fold‐change of 1.2 (calculated as the ratio of fold‐increase 3D to fold‐increase 2D). Furthermore, it should be noted that the total cell production in the spinner flask cultures was 4.8 times higher than that in T‐flask cultures. The total cell production in the spinner flask cultures was 5.2‐fold higher than that in T‐flask cultures. While the EV specific production (particles/cell) in T‐flask cultures (4.40 ± 1.21 × 108 particles/mL, p &lt; 0.05) was higher compared to spinner flask cultures (2.10 ± 0.04 × 108 particles/mL, p &lt; 0.05), the spinner flask culture system offers scalability, making it capable of producing enough MSC‐EV at a large scale for clinical applications. Therefore, we concluded that 3D culture system evaluated here serves as an efficient transitional platform that enables the scaling up of MSC‐EV production for therapeutic purposes by utilizing stirred tank bioreactors and maintaining xeno‐free conditions.</description><subject>bioprocess</subject><subject>Bioreactors</subject><subject>CD63 antigen</subject><subject>CD81 antigen</subject><subject>CD9 antigen</subject><subject>Cell culture</subject><subject>Culture</subject><subject>Extracellular vesicles</subject><subject>Flasks</subject><subject>Mesenchymal stem cells</subject><subject>mesenchymal stromal cells</subject><subject>Nanoparticles</subject><subject>Protozoa</subject><subject>Scaling up</subject><subject>static culture</subject><subject>Stromal cells</subject><subject>Suspension culture</subject><subject>Therapeutic applications</subject><subject>Vesicles</subject><subject>Western blotting</subject><issn>8756-7938</issn><issn>1520-6033</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kU9u1TAQhy0Eoo_CggsgS2xgkdYTJ7G9hIp_UiUQeqwjxx6XVEn88CSlb8cROELP1pPg8AoLJFYjeb75ZqwfY09BnIAQ5Wk379KJrMDcYxuoS1E0Qsr7bKNV3RTKSH3EHhFdCiG0aMqH7EjqslJQyg272SY7UT_3ceqnCx5SHDnNdu4dnyOnhXaY23HibhnmJSGnPc048hATH2y6wNsfP8nZAfkuRb-4VcRj4Nc4xdwKCZHj9Zysw2FY8gS_QurdgMQ9pv4K_WHniIST-7of7ZD355dc1xF6zB4EOxA-uavH7MvbN9uz98X5x3cfzl6dF06CNEWltNboFDS1Ca6zQTlfCe2FC9rUqnNghJfgjXdgjdJNBw48uFDVXgrQ8pi9OHjzP74tSHM79rReYCeMC7WlAVXXlRJVRp__g17GJU35ulYKBRWAMk2mXh4olyJRwtDuUj_atG9BtGts7Rpbu8aW2Wd3xqUb0f8l_-SUgdMD8L0fcP9_U_t6--nzb-UvNVmosw</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Santos, Natália Cristine Dias</creator><creator>Bruzadelle‐Vieira, Paula</creator><creator>Cássia Noronha, Nádia</creator><creator>Mizukami‐Martins, Amanda</creator><creator>Orellana, Maristela Delgado</creator><creator>Bentley, Maria Vitória L. B.</creator><creator>Covas, Dimas Tadeu</creator><creator>Swiech, Kamilla</creator><creator>Malmegrim, Kelen Cristina Ribeiro</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9693-6289</orcidid><orcidid>https://orcid.org/0000-0002-9303-0086</orcidid><orcidid>https://orcid.org/0000-0003-2149-0101</orcidid></search><sort><creationdate>202405</creationdate><title>Transitioning from static to suspension culture system for large‐scale production of xeno‐free extracellular vesicles derived from mesenchymal stromal cells</title><author>Santos, Natália Cristine Dias ; Bruzadelle‐Vieira, Paula ; Cássia Noronha, Nádia ; Mizukami‐Martins, Amanda ; Orellana, Maristela Delgado ; Bentley, Maria Vitória L. B. ; Covas, Dimas Tadeu ; Swiech, Kamilla ; Malmegrim, Kelen Cristina Ribeiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3139-47888ec71659fcbaf7cd408d0cf8957bc190d31d9dc1a9786b1c1d1cf45d30183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bioprocess</topic><topic>Bioreactors</topic><topic>CD63 antigen</topic><topic>CD81 antigen</topic><topic>CD9 antigen</topic><topic>Cell culture</topic><topic>Culture</topic><topic>Extracellular vesicles</topic><topic>Flasks</topic><topic>Mesenchymal stem cells</topic><topic>mesenchymal stromal cells</topic><topic>Nanoparticles</topic><topic>Protozoa</topic><topic>Scaling up</topic><topic>static culture</topic><topic>Stromal cells</topic><topic>Suspension culture</topic><topic>Therapeutic applications</topic><topic>Vesicles</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, Natália Cristine Dias</creatorcontrib><creatorcontrib>Bruzadelle‐Vieira, Paula</creatorcontrib><creatorcontrib>Cássia Noronha, Nádia</creatorcontrib><creatorcontrib>Mizukami‐Martins, Amanda</creatorcontrib><creatorcontrib>Orellana, Maristela Delgado</creatorcontrib><creatorcontrib>Bentley, Maria Vitória L. B.</creatorcontrib><creatorcontrib>Covas, Dimas Tadeu</creatorcontrib><creatorcontrib>Swiech, Kamilla</creatorcontrib><creatorcontrib>Malmegrim, Kelen Cristina Ribeiro</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, Natália Cristine Dias</au><au>Bruzadelle‐Vieira, Paula</au><au>Cássia Noronha, Nádia</au><au>Mizukami‐Martins, Amanda</au><au>Orellana, Maristela Delgado</au><au>Bentley, Maria Vitória L. B.</au><au>Covas, Dimas Tadeu</au><au>Swiech, Kamilla</au><au>Malmegrim, Kelen Cristina Ribeiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transitioning from static to suspension culture system for large‐scale production of xeno‐free extracellular vesicles derived from mesenchymal stromal cells</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Prog</addtitle><date>2024-05</date><risdate>2024</risdate><volume>40</volume><issue>3</issue><spage>e3419</spage><epage>n/a</epage><pages>e3419-n/a</pages><issn>8756-7938</issn><issn>1520-6033</issn><eissn>1520-6033</eissn><abstract>Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) have shown increasing therapeutic potential in the last years. However, large production of EV is required for therapeutic purposes. Thereby, scaling up MSC cultivation in bioreactors is essential to allow culture parameters monitoring. In this study, we reported the establishment of a scalable bioprocess to produce MSC‐EV in suspension cultures using spinner flasks and human collagen‐coated microcarriers (3D culture system). We compared the EV production in this 3D culture system with the standard static culture using T‐flasks (2D culture system). The EV produced in both systems were characterized and quantify by western blotting and nanoparticle tracking analysis. The presence of the typical protein markers CD9, CD63, and CD81 was confirmed by western blotting analyses for EV produced in both culture systems. The cell fold‐increase was 5.7‐fold for the 3D culture system and 4.6‐fold for the 2D culture system, signifying a fold‐change of 1.2 (calculated as the ratio of fold‐increase 3D to fold‐increase 2D). Furthermore, it should be noted that the total cell production in the spinner flask cultures was 4.8 times higher than that in T‐flask cultures. The total cell production in the spinner flask cultures was 5.2‐fold higher than that in T‐flask cultures. While the EV specific production (particles/cell) in T‐flask cultures (4.40 ± 1.21 × 108 particles/mL, p &lt; 0.05) was higher compared to spinner flask cultures (2.10 ± 0.04 × 108 particles/mL, p &lt; 0.05), the spinner flask culture system offers scalability, making it capable of producing enough MSC‐EV at a large scale for clinical applications. Therefore, we concluded that 3D culture system evaluated here serves as an efficient transitional platform that enables the scaling up of MSC‐EV production for therapeutic purposes by utilizing stirred tank bioreactors and maintaining xeno‐free conditions.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38247123</pmid><doi>10.1002/btpr.3419</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9693-6289</orcidid><orcidid>https://orcid.org/0000-0002-9303-0086</orcidid><orcidid>https://orcid.org/0000-0003-2149-0101</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 8756-7938
ispartof Biotechnology progress, 2024-05, Vol.40 (3), p.e3419-n/a
issn 8756-7938
1520-6033
1520-6033
language eng
recordid cdi_proquest_miscellaneous_2917554704
source Wiley Online Library Journals Frontfile Complete
subjects bioprocess
Bioreactors
CD63 antigen
CD81 antigen
CD9 antigen
Cell culture
Culture
Extracellular vesicles
Flasks
Mesenchymal stem cells
mesenchymal stromal cells
Nanoparticles
Protozoa
Scaling up
static culture
Stromal cells
Suspension culture
Therapeutic applications
Vesicles
Western blotting
title Transitioning from static to suspension culture system for large‐scale production of xeno‐free extracellular vesicles derived from mesenchymal stromal cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A13%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transitioning%20from%20static%20to%20suspension%20culture%20system%20for%20large%E2%80%90scale%20production%20of%20xeno%E2%80%90free%20extracellular%20vesicles%20derived%20from%20mesenchymal%20stromal%20cells&rft.jtitle=Biotechnology%20progress&rft.au=Santos,%20Nat%C3%A1lia%20Cristine%20Dias&rft.date=2024-05&rft.volume=40&rft.issue=3&rft.spage=e3419&rft.epage=n/a&rft.pages=e3419-n/a&rft.issn=8756-7938&rft.eissn=1520-6033&rft_id=info:doi/10.1002/btpr.3419&rft_dat=%3Cproquest_cross%3E2917554704%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3071411796&rft_id=info:pmid/38247123&rfr_iscdi=true