Iron–iron oxide core–shell nanoparticles synthesized by laser pyrolysis followed by superficial oxidation
Iron-based core–shell nanostructures were synthesized by laser pyrolysis in a two-steps procedure. In a first step, using a cross-flow configuration, the laser radiation was heating a gas phase mixture containing iron pentacarbonyl (vapors) entrained by an ethylene flow, which plays also the role of...
Gespeichert in:
Veröffentlicht in: | Applied surface science 2005-07, Vol.247 (1), p.25-31 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 31 |
---|---|
container_issue | 1 |
container_start_page | 25 |
container_title | Applied surface science |
container_volume | 247 |
creator | Dumitrache, F. Morjan, I. Alexandrescu, R. Ciupina, V. Prodan, G. Voicu, I. Fleaca, C. Albu, L. Savoiu, M. Sandu, I. Popovici, E. Soare, I. |
description | Iron-based core–shell nanostructures were synthesized by laser pyrolysis in a two-steps procedure. In a first step, using a cross-flow configuration, the laser radiation was heating a gas phase mixture containing iron pentacarbonyl (vapors) entrained by an ethylene flow, which plays also the role of an energy transfer agent. Secondly, a carefully controlled in situ passivation of the freshly formed pyrophoric iron nanoparticles created a protective iron oxide shell. The produced nanoparticles (22
nm size diameters) with core–shell features were analyzed by TEM, XRD, SAED and Raman spectroscopy. Majoritary iron and gamma iron oxide/magnetite and minoritary carbon phases were identified. In laser pyrolysis experiments in which the reaction temperature was increased, the catalyzed homogeneous nucleation and growth of carbon nanotubes in the gas phase was observed and is presented here for the first time. |
doi_str_mv | 10.1016/j.apsusc.2005.01.037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29173184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433205001133</els_id><sourcerecordid>29173184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-5e7e6453a75e15c5edb22001fe889dc7c4e11d13883b26aa5b440d8cc82a97433</originalsourceid><addsrcrecordid>eNp9UMtO3DAUtVCRmAJ_wCKbdpfUjuPE2SAhRNuRkLopa8tzc6PxyBOnvplCuuIf-MN-CZ4GiV1XR7r3PHQOY1eCF4KL-suusCMdCIqSc1VwUXDZnLCV0I3MldLVB7ZKtDavpCzP2EeiHeeiTN8V269jGP4-v7gEWXhyHWYQIqYLbdH7bLBDGG2cHHikjOZh2iK5P9hlmznzljBm4xyDn8lR1gfvw-Pyo8OIsXfgrP_naycXhgt22ltPePmG5-zh693P2-_5_Y9v69ub-xxk3Uy5wgbrSknbKBQKFHabMlUTPWrddtBAhUJ0QmotN2VtrdpUFe80gC5t26SW5-zz4jvG8OuANJm9I0h97IDhQKZsRSOFrhKxWogQA1HE3ozR7W2cjeDmuK3ZmWVbc9zWcGHStkn26c3fEljfRzuAo3dtrVNAe7S_XniYyv52GA2BwwGwcxFhMl1w_w96BccPll0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29173184</pqid></control><display><type>article</type><title>Iron–iron oxide core–shell nanoparticles synthesized by laser pyrolysis followed by superficial oxidation</title><source>Elsevier ScienceDirect Journals</source><creator>Dumitrache, F. ; Morjan, I. ; Alexandrescu, R. ; Ciupina, V. ; Prodan, G. ; Voicu, I. ; Fleaca, C. ; Albu, L. ; Savoiu, M. ; Sandu, I. ; Popovici, E. ; Soare, I.</creator><creatorcontrib>Dumitrache, F. ; Morjan, I. ; Alexandrescu, R. ; Ciupina, V. ; Prodan, G. ; Voicu, I. ; Fleaca, C. ; Albu, L. ; Savoiu, M. ; Sandu, I. ; Popovici, E. ; Soare, I.</creatorcontrib><description>Iron-based core–shell nanostructures were synthesized by laser pyrolysis in a two-steps procedure. In a first step, using a cross-flow configuration, the laser radiation was heating a gas phase mixture containing iron pentacarbonyl (vapors) entrained by an ethylene flow, which plays also the role of an energy transfer agent. Secondly, a carefully controlled in situ passivation of the freshly formed pyrophoric iron nanoparticles created a protective iron oxide shell. The produced nanoparticles (22
nm size diameters) with core–shell features were analyzed by TEM, XRD, SAED and Raman spectroscopy. Majoritary iron and gamma iron oxide/magnetite and minoritary carbon phases were identified. In laser pyrolysis experiments in which the reaction temperature was increased, the catalyzed homogeneous nucleation and growth of carbon nanotubes in the gas phase was observed and is presented here for the first time.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2005.01.037</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Carbon nanotube ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Iron core–oxide shell nanocomposite ; Laser pyrolysis ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials science ; Nanoscale materials and structures: fabrication and characterization ; Other topics in nanoscale materials and structures ; Passivation ; Physics ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Applied surface science, 2005-07, Vol.247 (1), p.25-31</ispartof><rights>2005 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-5e7e6453a75e15c5edb22001fe889dc7c4e11d13883b26aa5b440d8cc82a97433</citedby><cites>FETCH-LOGICAL-c367t-5e7e6453a75e15c5edb22001fe889dc7c4e11d13883b26aa5b440d8cc82a97433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apsusc.2005.01.037$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,3537,23911,23912,25121,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16891794$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dumitrache, F.</creatorcontrib><creatorcontrib>Morjan, I.</creatorcontrib><creatorcontrib>Alexandrescu, R.</creatorcontrib><creatorcontrib>Ciupina, V.</creatorcontrib><creatorcontrib>Prodan, G.</creatorcontrib><creatorcontrib>Voicu, I.</creatorcontrib><creatorcontrib>Fleaca, C.</creatorcontrib><creatorcontrib>Albu, L.</creatorcontrib><creatorcontrib>Savoiu, M.</creatorcontrib><creatorcontrib>Sandu, I.</creatorcontrib><creatorcontrib>Popovici, E.</creatorcontrib><creatorcontrib>Soare, I.</creatorcontrib><title>Iron–iron oxide core–shell nanoparticles synthesized by laser pyrolysis followed by superficial oxidation</title><title>Applied surface science</title><description>Iron-based core–shell nanostructures were synthesized by laser pyrolysis in a two-steps procedure. In a first step, using a cross-flow configuration, the laser radiation was heating a gas phase mixture containing iron pentacarbonyl (vapors) entrained by an ethylene flow, which plays also the role of an energy transfer agent. Secondly, a carefully controlled in situ passivation of the freshly formed pyrophoric iron nanoparticles created a protective iron oxide shell. The produced nanoparticles (22
nm size diameters) with core–shell features were analyzed by TEM, XRD, SAED and Raman spectroscopy. Majoritary iron and gamma iron oxide/magnetite and minoritary carbon phases were identified. In laser pyrolysis experiments in which the reaction temperature was increased, the catalyzed homogeneous nucleation and growth of carbon nanotubes in the gas phase was observed and is presented here for the first time.</description><subject>Carbon nanotube</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Iron core–oxide shell nanocomposite</subject><subject>Laser pyrolysis</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials science</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Passivation</subject><subject>Physics</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9UMtO3DAUtVCRmAJ_wCKbdpfUjuPE2SAhRNuRkLopa8tzc6PxyBOnvplCuuIf-MN-CZ4GiV1XR7r3PHQOY1eCF4KL-suusCMdCIqSc1VwUXDZnLCV0I3MldLVB7ZKtDavpCzP2EeiHeeiTN8V269jGP4-v7gEWXhyHWYQIqYLbdH7bLBDGG2cHHikjOZh2iK5P9hlmznzljBm4xyDn8lR1gfvw-Pyo8OIsXfgrP_naycXhgt22ltPePmG5-zh693P2-_5_Y9v69ub-xxk3Uy5wgbrSknbKBQKFHabMlUTPWrddtBAhUJ0QmotN2VtrdpUFe80gC5t26SW5-zz4jvG8OuANJm9I0h97IDhQKZsRSOFrhKxWogQA1HE3ozR7W2cjeDmuK3ZmWVbc9zWcGHStkn26c3fEljfRzuAo3dtrVNAe7S_XniYyv52GA2BwwGwcxFhMl1w_w96BccPll0</recordid><startdate>20050715</startdate><enddate>20050715</enddate><creator>Dumitrache, F.</creator><creator>Morjan, I.</creator><creator>Alexandrescu, R.</creator><creator>Ciupina, V.</creator><creator>Prodan, G.</creator><creator>Voicu, I.</creator><creator>Fleaca, C.</creator><creator>Albu, L.</creator><creator>Savoiu, M.</creator><creator>Sandu, I.</creator><creator>Popovici, E.</creator><creator>Soare, I.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20050715</creationdate><title>Iron–iron oxide core–shell nanoparticles synthesized by laser pyrolysis followed by superficial oxidation</title><author>Dumitrache, F. ; Morjan, I. ; Alexandrescu, R. ; Ciupina, V. ; Prodan, G. ; Voicu, I. ; Fleaca, C. ; Albu, L. ; Savoiu, M. ; Sandu, I. ; Popovici, E. ; Soare, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-5e7e6453a75e15c5edb22001fe889dc7c4e11d13883b26aa5b440d8cc82a97433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Carbon nanotube</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Iron core–oxide shell nanocomposite</topic><topic>Laser pyrolysis</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials science</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Passivation</topic><topic>Physics</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dumitrache, F.</creatorcontrib><creatorcontrib>Morjan, I.</creatorcontrib><creatorcontrib>Alexandrescu, R.</creatorcontrib><creatorcontrib>Ciupina, V.</creatorcontrib><creatorcontrib>Prodan, G.</creatorcontrib><creatorcontrib>Voicu, I.</creatorcontrib><creatorcontrib>Fleaca, C.</creatorcontrib><creatorcontrib>Albu, L.</creatorcontrib><creatorcontrib>Savoiu, M.</creatorcontrib><creatorcontrib>Sandu, I.</creatorcontrib><creatorcontrib>Popovici, E.</creatorcontrib><creatorcontrib>Soare, I.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dumitrache, F.</au><au>Morjan, I.</au><au>Alexandrescu, R.</au><au>Ciupina, V.</au><au>Prodan, G.</au><au>Voicu, I.</au><au>Fleaca, C.</au><au>Albu, L.</au><au>Savoiu, M.</au><au>Sandu, I.</au><au>Popovici, E.</au><au>Soare, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iron–iron oxide core–shell nanoparticles synthesized by laser pyrolysis followed by superficial oxidation</atitle><jtitle>Applied surface science</jtitle><date>2005-07-15</date><risdate>2005</risdate><volume>247</volume><issue>1</issue><spage>25</spage><epage>31</epage><pages>25-31</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>Iron-based core–shell nanostructures were synthesized by laser pyrolysis in a two-steps procedure. In a first step, using a cross-flow configuration, the laser radiation was heating a gas phase mixture containing iron pentacarbonyl (vapors) entrained by an ethylene flow, which plays also the role of an energy transfer agent. Secondly, a carefully controlled in situ passivation of the freshly formed pyrophoric iron nanoparticles created a protective iron oxide shell. The produced nanoparticles (22
nm size diameters) with core–shell features were analyzed by TEM, XRD, SAED and Raman spectroscopy. Majoritary iron and gamma iron oxide/magnetite and minoritary carbon phases were identified. In laser pyrolysis experiments in which the reaction temperature was increased, the catalyzed homogeneous nucleation and growth of carbon nanotubes in the gas phase was observed and is presented here for the first time.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2005.01.037</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-4332 |
ispartof | Applied surface science, 2005-07, Vol.247 (1), p.25-31 |
issn | 0169-4332 1873-5584 |
language | eng |
recordid | cdi_proquest_miscellaneous_29173184 |
source | Elsevier ScienceDirect Journals |
subjects | Carbon nanotube Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Exact sciences and technology Iron core–oxide shell nanocomposite Laser pyrolysis Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties Materials science Nanoscale materials and structures: fabrication and characterization Other topics in nanoscale materials and structures Passivation Physics Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) |
title | Iron–iron oxide core–shell nanoparticles synthesized by laser pyrolysis followed by superficial oxidation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A37%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iron%E2%80%93iron%20oxide%20core%E2%80%93shell%20nanoparticles%20synthesized%20by%20laser%20pyrolysis%20followed%20by%20superficial%20oxidation&rft.jtitle=Applied%20surface%20science&rft.au=Dumitrache,%20F.&rft.date=2005-07-15&rft.volume=247&rft.issue=1&rft.spage=25&rft.epage=31&rft.pages=25-31&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2005.01.037&rft_dat=%3Cproquest_cross%3E29173184%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29173184&rft_id=info:pmid/&rft_els_id=S0169433205001133&rfr_iscdi=true |