Iron–iron oxide core–shell nanoparticles synthesized by laser pyrolysis followed by superficial oxidation

Iron-based core–shell nanostructures were synthesized by laser pyrolysis in a two-steps procedure. In a first step, using a cross-flow configuration, the laser radiation was heating a gas phase mixture containing iron pentacarbonyl (vapors) entrained by an ethylene flow, which plays also the role of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied surface science 2005-07, Vol.247 (1), p.25-31
Hauptverfasser: Dumitrache, F., Morjan, I., Alexandrescu, R., Ciupina, V., Prodan, G., Voicu, I., Fleaca, C., Albu, L., Savoiu, M., Sandu, I., Popovici, E., Soare, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31
container_issue 1
container_start_page 25
container_title Applied surface science
container_volume 247
creator Dumitrache, F.
Morjan, I.
Alexandrescu, R.
Ciupina, V.
Prodan, G.
Voicu, I.
Fleaca, C.
Albu, L.
Savoiu, M.
Sandu, I.
Popovici, E.
Soare, I.
description Iron-based core–shell nanostructures were synthesized by laser pyrolysis in a two-steps procedure. In a first step, using a cross-flow configuration, the laser radiation was heating a gas phase mixture containing iron pentacarbonyl (vapors) entrained by an ethylene flow, which plays also the role of an energy transfer agent. Secondly, a carefully controlled in situ passivation of the freshly formed pyrophoric iron nanoparticles created a protective iron oxide shell. The produced nanoparticles (22 nm size diameters) with core–shell features were analyzed by TEM, XRD, SAED and Raman spectroscopy. Majoritary iron and gamma iron oxide/magnetite and minoritary carbon phases were identified. In laser pyrolysis experiments in which the reaction temperature was increased, the catalyzed homogeneous nucleation and growth of carbon nanotubes in the gas phase was observed and is presented here for the first time.
doi_str_mv 10.1016/j.apsusc.2005.01.037
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29173184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433205001133</els_id><sourcerecordid>29173184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-5e7e6453a75e15c5edb22001fe889dc7c4e11d13883b26aa5b440d8cc82a97433</originalsourceid><addsrcrecordid>eNp9UMtO3DAUtVCRmAJ_wCKbdpfUjuPE2SAhRNuRkLopa8tzc6PxyBOnvplCuuIf-MN-CZ4GiV1XR7r3PHQOY1eCF4KL-suusCMdCIqSc1VwUXDZnLCV0I3MldLVB7ZKtDavpCzP2EeiHeeiTN8V269jGP4-v7gEWXhyHWYQIqYLbdH7bLBDGG2cHHikjOZh2iK5P9hlmznzljBm4xyDn8lR1gfvw-Pyo8OIsXfgrP_naycXhgt22ltPePmG5-zh693P2-_5_Y9v69ub-xxk3Uy5wgbrSknbKBQKFHabMlUTPWrddtBAhUJ0QmotN2VtrdpUFe80gC5t26SW5-zz4jvG8OuANJm9I0h97IDhQKZsRSOFrhKxWogQA1HE3ozR7W2cjeDmuK3ZmWVbc9zWcGHStkn26c3fEljfRzuAo3dtrVNAe7S_XniYyv52GA2BwwGwcxFhMl1w_w96BccPll0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29173184</pqid></control><display><type>article</type><title>Iron–iron oxide core–shell nanoparticles synthesized by laser pyrolysis followed by superficial oxidation</title><source>Elsevier ScienceDirect Journals</source><creator>Dumitrache, F. ; Morjan, I. ; Alexandrescu, R. ; Ciupina, V. ; Prodan, G. ; Voicu, I. ; Fleaca, C. ; Albu, L. ; Savoiu, M. ; Sandu, I. ; Popovici, E. ; Soare, I.</creator><creatorcontrib>Dumitrache, F. ; Morjan, I. ; Alexandrescu, R. ; Ciupina, V. ; Prodan, G. ; Voicu, I. ; Fleaca, C. ; Albu, L. ; Savoiu, M. ; Sandu, I. ; Popovici, E. ; Soare, I.</creatorcontrib><description>Iron-based core–shell nanostructures were synthesized by laser pyrolysis in a two-steps procedure. In a first step, using a cross-flow configuration, the laser radiation was heating a gas phase mixture containing iron pentacarbonyl (vapors) entrained by an ethylene flow, which plays also the role of an energy transfer agent. Secondly, a carefully controlled in situ passivation of the freshly formed pyrophoric iron nanoparticles created a protective iron oxide shell. The produced nanoparticles (22 nm size diameters) with core–shell features were analyzed by TEM, XRD, SAED and Raman spectroscopy. Majoritary iron and gamma iron oxide/magnetite and minoritary carbon phases were identified. In laser pyrolysis experiments in which the reaction temperature was increased, the catalyzed homogeneous nucleation and growth of carbon nanotubes in the gas phase was observed and is presented here for the first time.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2005.01.037</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Carbon nanotube ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Iron core–oxide shell nanocomposite ; Laser pyrolysis ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials science ; Nanoscale materials and structures: fabrication and characterization ; Other topics in nanoscale materials and structures ; Passivation ; Physics ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Applied surface science, 2005-07, Vol.247 (1), p.25-31</ispartof><rights>2005 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-5e7e6453a75e15c5edb22001fe889dc7c4e11d13883b26aa5b440d8cc82a97433</citedby><cites>FETCH-LOGICAL-c367t-5e7e6453a75e15c5edb22001fe889dc7c4e11d13883b26aa5b440d8cc82a97433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apsusc.2005.01.037$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,3537,23911,23912,25121,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16891794$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dumitrache, F.</creatorcontrib><creatorcontrib>Morjan, I.</creatorcontrib><creatorcontrib>Alexandrescu, R.</creatorcontrib><creatorcontrib>Ciupina, V.</creatorcontrib><creatorcontrib>Prodan, G.</creatorcontrib><creatorcontrib>Voicu, I.</creatorcontrib><creatorcontrib>Fleaca, C.</creatorcontrib><creatorcontrib>Albu, L.</creatorcontrib><creatorcontrib>Savoiu, M.</creatorcontrib><creatorcontrib>Sandu, I.</creatorcontrib><creatorcontrib>Popovici, E.</creatorcontrib><creatorcontrib>Soare, I.</creatorcontrib><title>Iron–iron oxide core–shell nanoparticles synthesized by laser pyrolysis followed by superficial oxidation</title><title>Applied surface science</title><description>Iron-based core–shell nanostructures were synthesized by laser pyrolysis in a two-steps procedure. In a first step, using a cross-flow configuration, the laser radiation was heating a gas phase mixture containing iron pentacarbonyl (vapors) entrained by an ethylene flow, which plays also the role of an energy transfer agent. Secondly, a carefully controlled in situ passivation of the freshly formed pyrophoric iron nanoparticles created a protective iron oxide shell. The produced nanoparticles (22 nm size diameters) with core–shell features were analyzed by TEM, XRD, SAED and Raman spectroscopy. Majoritary iron and gamma iron oxide/magnetite and minoritary carbon phases were identified. In laser pyrolysis experiments in which the reaction temperature was increased, the catalyzed homogeneous nucleation and growth of carbon nanotubes in the gas phase was observed and is presented here for the first time.</description><subject>Carbon nanotube</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Iron core–oxide shell nanocomposite</subject><subject>Laser pyrolysis</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials science</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Passivation</subject><subject>Physics</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9UMtO3DAUtVCRmAJ_wCKbdpfUjuPE2SAhRNuRkLopa8tzc6PxyBOnvplCuuIf-MN-CZ4GiV1XR7r3PHQOY1eCF4KL-suusCMdCIqSc1VwUXDZnLCV0I3MldLVB7ZKtDavpCzP2EeiHeeiTN8V269jGP4-v7gEWXhyHWYQIqYLbdH7bLBDGG2cHHikjOZh2iK5P9hlmznzljBm4xyDn8lR1gfvw-Pyo8OIsXfgrP_naycXhgt22ltPePmG5-zh693P2-_5_Y9v69ub-xxk3Uy5wgbrSknbKBQKFHabMlUTPWrddtBAhUJ0QmotN2VtrdpUFe80gC5t26SW5-zz4jvG8OuANJm9I0h97IDhQKZsRSOFrhKxWogQA1HE3ozR7W2cjeDmuK3ZmWVbc9zWcGHStkn26c3fEljfRzuAo3dtrVNAe7S_XniYyv52GA2BwwGwcxFhMl1w_w96BccPll0</recordid><startdate>20050715</startdate><enddate>20050715</enddate><creator>Dumitrache, F.</creator><creator>Morjan, I.</creator><creator>Alexandrescu, R.</creator><creator>Ciupina, V.</creator><creator>Prodan, G.</creator><creator>Voicu, I.</creator><creator>Fleaca, C.</creator><creator>Albu, L.</creator><creator>Savoiu, M.</creator><creator>Sandu, I.</creator><creator>Popovici, E.</creator><creator>Soare, I.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20050715</creationdate><title>Iron–iron oxide core–shell nanoparticles synthesized by laser pyrolysis followed by superficial oxidation</title><author>Dumitrache, F. ; Morjan, I. ; Alexandrescu, R. ; Ciupina, V. ; Prodan, G. ; Voicu, I. ; Fleaca, C. ; Albu, L. ; Savoiu, M. ; Sandu, I. ; Popovici, E. ; Soare, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-5e7e6453a75e15c5edb22001fe889dc7c4e11d13883b26aa5b440d8cc82a97433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Carbon nanotube</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Iron core–oxide shell nanocomposite</topic><topic>Laser pyrolysis</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials science</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Passivation</topic><topic>Physics</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dumitrache, F.</creatorcontrib><creatorcontrib>Morjan, I.</creatorcontrib><creatorcontrib>Alexandrescu, R.</creatorcontrib><creatorcontrib>Ciupina, V.</creatorcontrib><creatorcontrib>Prodan, G.</creatorcontrib><creatorcontrib>Voicu, I.</creatorcontrib><creatorcontrib>Fleaca, C.</creatorcontrib><creatorcontrib>Albu, L.</creatorcontrib><creatorcontrib>Savoiu, M.</creatorcontrib><creatorcontrib>Sandu, I.</creatorcontrib><creatorcontrib>Popovici, E.</creatorcontrib><creatorcontrib>Soare, I.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dumitrache, F.</au><au>Morjan, I.</au><au>Alexandrescu, R.</au><au>Ciupina, V.</au><au>Prodan, G.</au><au>Voicu, I.</au><au>Fleaca, C.</au><au>Albu, L.</au><au>Savoiu, M.</au><au>Sandu, I.</au><au>Popovici, E.</au><au>Soare, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iron–iron oxide core–shell nanoparticles synthesized by laser pyrolysis followed by superficial oxidation</atitle><jtitle>Applied surface science</jtitle><date>2005-07-15</date><risdate>2005</risdate><volume>247</volume><issue>1</issue><spage>25</spage><epage>31</epage><pages>25-31</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>Iron-based core–shell nanostructures were synthesized by laser pyrolysis in a two-steps procedure. In a first step, using a cross-flow configuration, the laser radiation was heating a gas phase mixture containing iron pentacarbonyl (vapors) entrained by an ethylene flow, which plays also the role of an energy transfer agent. Secondly, a carefully controlled in situ passivation of the freshly formed pyrophoric iron nanoparticles created a protective iron oxide shell. The produced nanoparticles (22 nm size diameters) with core–shell features were analyzed by TEM, XRD, SAED and Raman spectroscopy. Majoritary iron and gamma iron oxide/magnetite and minoritary carbon phases were identified. In laser pyrolysis experiments in which the reaction temperature was increased, the catalyzed homogeneous nucleation and growth of carbon nanotubes in the gas phase was observed and is presented here for the first time.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2005.01.037</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-4332
ispartof Applied surface science, 2005-07, Vol.247 (1), p.25-31
issn 0169-4332
1873-5584
language eng
recordid cdi_proquest_miscellaneous_29173184
source Elsevier ScienceDirect Journals
subjects Carbon nanotube
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Iron core–oxide shell nanocomposite
Laser pyrolysis
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Materials science
Nanoscale materials and structures: fabrication and characterization
Other topics in nanoscale materials and structures
Passivation
Physics
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
title Iron–iron oxide core–shell nanoparticles synthesized by laser pyrolysis followed by superficial oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A37%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iron%E2%80%93iron%20oxide%20core%E2%80%93shell%20nanoparticles%20synthesized%20by%20laser%20pyrolysis%20followed%20by%20superficial%20oxidation&rft.jtitle=Applied%20surface%20science&rft.au=Dumitrache,%20F.&rft.date=2005-07-15&rft.volume=247&rft.issue=1&rft.spage=25&rft.epage=31&rft.pages=25-31&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2005.01.037&rft_dat=%3Cproquest_cross%3E29173184%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29173184&rft_id=info:pmid/&rft_els_id=S0169433205001133&rfr_iscdi=true