Synthesis and Characterization of a Novel Nanosized Polyaniline

Polyaniline (PANI) is a conductive polymer easily converted into a conducting state. However, its limited mechanical properties have generated interest in fabricating PANI composites with other polymeric materials. In this study, a PANI-prevulcanized latex composite film was synthesized and fabricat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2023-11, Vol.15 (23), p.4565
Hauptverfasser: Banjar, Mohd Faizar, Joynal Abedin, Fatin Najwa, Fizal, Ahmad Noor Syimir, Muhamad Sarih, Norazilawati, Hossain, Md Sohrab, Osman, Hakimah, Khalil, Nor Afifah, Ahmad Yahaya, Ahmad Naim, Zulkifli, Muzafar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 4565
container_title Polymers
container_volume 15
creator Banjar, Mohd Faizar
Joynal Abedin, Fatin Najwa
Fizal, Ahmad Noor Syimir
Muhamad Sarih, Norazilawati
Hossain, Md Sohrab
Osman, Hakimah
Khalil, Nor Afifah
Ahmad Yahaya, Ahmad Naim
Zulkifli, Muzafar
description Polyaniline (PANI) is a conductive polymer easily converted into a conducting state. However, its limited mechanical properties have generated interest in fabricating PANI composites with other polymeric materials. In this study, a PANI-prevulcanized latex composite film was synthesized and fabricated in two phases following chronological steps. The first phase determined the following optimum parameters for synthesizing nanosized PANI, which were as follows: an initial molar ratio of 1, a stirring speed of 600 rpm, a synthesis temperature of 25 °C, purification via filtration, and washing using dopant acid, acetone, and distilled water. The use of a nonionic surfactant, Triton X-100, at 0.1% concentration favored PANI formation in a smaller particle size of approximately 600 nm and good dispersibility over seven days of observation compared to the use of anionic sodium dodecyl sulfate. Ultraviolet-visible spectroscopy (UV-Vis) showed that the PANI synthesized using a surfactant was in the emeraldine base form, as the washing process tends to decrease the doping level in the PANI backbone. Our scanning electron microscopy analysis showed that the optimized synthesis parameters produced colloidal PANI with an average particle size of 695 nm. This higher aspect ratio explained the higher conductivity of nanosized PANI compared to micron-sized PANI. Following the chronological steps to determine the optimal parameters produced a nanosized PANI powder. The nanosized PANI had higher conductivity than the micron-sized PANI because of its higher aspect ratio. When PANI is synthesized in smaller particle sizes, it has higher conductivity. Atomic force microscopy analysis showed that the current flow is higher across a 5 µm scanned area of nanosized PANI because it has a larger surface area. Thus, more sites for the current to flow through were present on the nanosized PANI particles.
doi_str_mv 10.3390/polym15234565
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2916408899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A775891987</galeid><sourcerecordid>A775891987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-b769042e49714f3255111ce09972022b38668708327c9778b401639093ce90a83</originalsourceid><addsrcrecordid>eNpdkUtLAzEQx4MoVmqPXmXBi5eteWxeJynFF5QqqOclu521KbtJ3ewK7ac30ipqcsgk85vJf2YQOiN4zJjGV2tfbxrCKcu44AfohGLJ0owJfPjLHqBRCCscV6QEkcdowBRlNN5P0PXzxnVLCDYkxi2S6dK0puygtVvTWe8SXyUmmfsPqJO5cT7YLSySp_itcba2Dk7RUWXqAKP9OUSvtzcv0_t09nj3MJ3M0pJx3qWFFBpnFDItSVYxyjkhpASstaSY0oIpIZTEilFZailVkWEiYoWalaCxUWyILnd5161_7yF0eWNDCXVtHPg-5FQTkWGltI7oxT905fvWRXU5jf4sCuIkUuMd9WZqyK2rfBcrj3sBjS29g8rG94mUXGmilYwB6S6gbH0ILVT5urWNaTc5wfnXNPI_04j8-V5GXzSw-KG_e88-AbSWgac</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899435551</pqid></control><display><type>article</type><title>Synthesis and Characterization of a Novel Nanosized Polyaniline</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Banjar, Mohd Faizar ; Joynal Abedin, Fatin Najwa ; Fizal, Ahmad Noor Syimir ; Muhamad Sarih, Norazilawati ; Hossain, Md Sohrab ; Osman, Hakimah ; Khalil, Nor Afifah ; Ahmad Yahaya, Ahmad Naim ; Zulkifli, Muzafar</creator><creatorcontrib>Banjar, Mohd Faizar ; Joynal Abedin, Fatin Najwa ; Fizal, Ahmad Noor Syimir ; Muhamad Sarih, Norazilawati ; Hossain, Md Sohrab ; Osman, Hakimah ; Khalil, Nor Afifah ; Ahmad Yahaya, Ahmad Naim ; Zulkifli, Muzafar</creatorcontrib><description>Polyaniline (PANI) is a conductive polymer easily converted into a conducting state. However, its limited mechanical properties have generated interest in fabricating PANI composites with other polymeric materials. In this study, a PANI-prevulcanized latex composite film was synthesized and fabricated in two phases following chronological steps. The first phase determined the following optimum parameters for synthesizing nanosized PANI, which were as follows: an initial molar ratio of 1, a stirring speed of 600 rpm, a synthesis temperature of 25 °C, purification via filtration, and washing using dopant acid, acetone, and distilled water. The use of a nonionic surfactant, Triton X-100, at 0.1% concentration favored PANI formation in a smaller particle size of approximately 600 nm and good dispersibility over seven days of observation compared to the use of anionic sodium dodecyl sulfate. Ultraviolet-visible spectroscopy (UV-Vis) showed that the PANI synthesized using a surfactant was in the emeraldine base form, as the washing process tends to decrease the doping level in the PANI backbone. Our scanning electron microscopy analysis showed that the optimized synthesis parameters produced colloidal PANI with an average particle size of 695 nm. This higher aspect ratio explained the higher conductivity of nanosized PANI compared to micron-sized PANI. Following the chronological steps to determine the optimal parameters produced a nanosized PANI powder. The nanosized PANI had higher conductivity than the micron-sized PANI because of its higher aspect ratio. When PANI is synthesized in smaller particle sizes, it has higher conductivity. Atomic force microscopy analysis showed that the current flow is higher across a 5 µm scanned area of nanosized PANI because it has a larger surface area. Thus, more sites for the current to flow through were present on the nanosized PANI particles.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym15234565</identifier><identifier>PMID: 38232004</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Analysis ; Aniline ; Aspect ratio ; Chemical synthesis ; Composite materials ; Conducting polymers ; Distilled water ; Fourier transforms ; Identification and classification ; Latex ; Mechanical properties ; Methods ; Microscopy ; Nanoparticles ; Optimization ; Parameters ; Particle size ; Polyanilines ; Polymerization ; Polymers ; Properties ; Scanning microscopy ; Sodium dodecyl sulfate ; Spectrum analysis ; Surfactants ; Synthesis ; Textiles ; Washing</subject><ispartof>Polymers, 2023-11, Vol.15 (23), p.4565</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c355t-b769042e49714f3255111ce09972022b38668708327c9778b401639093ce90a83</cites><orcidid>0000-0001-9784-4901 ; 0000-0002-1423-1075 ; 0000-0002-3095-1574 ; 0000-0002-6873-2588 ; 0000-0002-0730-5718 ; 0000-0002-8047-2299</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38232004$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Banjar, Mohd Faizar</creatorcontrib><creatorcontrib>Joynal Abedin, Fatin Najwa</creatorcontrib><creatorcontrib>Fizal, Ahmad Noor Syimir</creatorcontrib><creatorcontrib>Muhamad Sarih, Norazilawati</creatorcontrib><creatorcontrib>Hossain, Md Sohrab</creatorcontrib><creatorcontrib>Osman, Hakimah</creatorcontrib><creatorcontrib>Khalil, Nor Afifah</creatorcontrib><creatorcontrib>Ahmad Yahaya, Ahmad Naim</creatorcontrib><creatorcontrib>Zulkifli, Muzafar</creatorcontrib><title>Synthesis and Characterization of a Novel Nanosized Polyaniline</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>Polyaniline (PANI) is a conductive polymer easily converted into a conducting state. However, its limited mechanical properties have generated interest in fabricating PANI composites with other polymeric materials. In this study, a PANI-prevulcanized latex composite film was synthesized and fabricated in two phases following chronological steps. The first phase determined the following optimum parameters for synthesizing nanosized PANI, which were as follows: an initial molar ratio of 1, a stirring speed of 600 rpm, a synthesis temperature of 25 °C, purification via filtration, and washing using dopant acid, acetone, and distilled water. The use of a nonionic surfactant, Triton X-100, at 0.1% concentration favored PANI formation in a smaller particle size of approximately 600 nm and good dispersibility over seven days of observation compared to the use of anionic sodium dodecyl sulfate. Ultraviolet-visible spectroscopy (UV-Vis) showed that the PANI synthesized using a surfactant was in the emeraldine base form, as the washing process tends to decrease the doping level in the PANI backbone. Our scanning electron microscopy analysis showed that the optimized synthesis parameters produced colloidal PANI with an average particle size of 695 nm. This higher aspect ratio explained the higher conductivity of nanosized PANI compared to micron-sized PANI. Following the chronological steps to determine the optimal parameters produced a nanosized PANI powder. The nanosized PANI had higher conductivity than the micron-sized PANI because of its higher aspect ratio. When PANI is synthesized in smaller particle sizes, it has higher conductivity. Atomic force microscopy analysis showed that the current flow is higher across a 5 µm scanned area of nanosized PANI because it has a larger surface area. Thus, more sites for the current to flow through were present on the nanosized PANI particles.</description><subject>Analysis</subject><subject>Aniline</subject><subject>Aspect ratio</subject><subject>Chemical synthesis</subject><subject>Composite materials</subject><subject>Conducting polymers</subject><subject>Distilled water</subject><subject>Fourier transforms</subject><subject>Identification and classification</subject><subject>Latex</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Nanoparticles</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Particle size</subject><subject>Polyanilines</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Properties</subject><subject>Scanning microscopy</subject><subject>Sodium dodecyl sulfate</subject><subject>Spectrum analysis</subject><subject>Surfactants</subject><subject>Synthesis</subject><subject>Textiles</subject><subject>Washing</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkUtLAzEQx4MoVmqPXmXBi5eteWxeJynFF5QqqOclu521KbtJ3ewK7ac30ipqcsgk85vJf2YQOiN4zJjGV2tfbxrCKcu44AfohGLJ0owJfPjLHqBRCCscV6QEkcdowBRlNN5P0PXzxnVLCDYkxi2S6dK0puygtVvTWe8SXyUmmfsPqJO5cT7YLSySp_itcba2Dk7RUWXqAKP9OUSvtzcv0_t09nj3MJ3M0pJx3qWFFBpnFDItSVYxyjkhpASstaSY0oIpIZTEilFZailVkWEiYoWalaCxUWyILnd5161_7yF0eWNDCXVtHPg-5FQTkWGltI7oxT905fvWRXU5jf4sCuIkUuMd9WZqyK2rfBcrj3sBjS29g8rG94mUXGmilYwB6S6gbH0ILVT5urWNaTc5wfnXNPI_04j8-V5GXzSw-KG_e88-AbSWgac</recordid><startdate>20231129</startdate><enddate>20231129</enddate><creator>Banjar, Mohd Faizar</creator><creator>Joynal Abedin, Fatin Najwa</creator><creator>Fizal, Ahmad Noor Syimir</creator><creator>Muhamad Sarih, Norazilawati</creator><creator>Hossain, Md Sohrab</creator><creator>Osman, Hakimah</creator><creator>Khalil, Nor Afifah</creator><creator>Ahmad Yahaya, Ahmad Naim</creator><creator>Zulkifli, Muzafar</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9784-4901</orcidid><orcidid>https://orcid.org/0000-0002-1423-1075</orcidid><orcidid>https://orcid.org/0000-0002-3095-1574</orcidid><orcidid>https://orcid.org/0000-0002-6873-2588</orcidid><orcidid>https://orcid.org/0000-0002-0730-5718</orcidid><orcidid>https://orcid.org/0000-0002-8047-2299</orcidid></search><sort><creationdate>20231129</creationdate><title>Synthesis and Characterization of a Novel Nanosized Polyaniline</title><author>Banjar, Mohd Faizar ; Joynal Abedin, Fatin Najwa ; Fizal, Ahmad Noor Syimir ; Muhamad Sarih, Norazilawati ; Hossain, Md Sohrab ; Osman, Hakimah ; Khalil, Nor Afifah ; Ahmad Yahaya, Ahmad Naim ; Zulkifli, Muzafar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-b769042e49714f3255111ce09972022b38668708327c9778b401639093ce90a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Aniline</topic><topic>Aspect ratio</topic><topic>Chemical synthesis</topic><topic>Composite materials</topic><topic>Conducting polymers</topic><topic>Distilled water</topic><topic>Fourier transforms</topic><topic>Identification and classification</topic><topic>Latex</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Nanoparticles</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Particle size</topic><topic>Polyanilines</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Properties</topic><topic>Scanning microscopy</topic><topic>Sodium dodecyl sulfate</topic><topic>Spectrum analysis</topic><topic>Surfactants</topic><topic>Synthesis</topic><topic>Textiles</topic><topic>Washing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banjar, Mohd Faizar</creatorcontrib><creatorcontrib>Joynal Abedin, Fatin Najwa</creatorcontrib><creatorcontrib>Fizal, Ahmad Noor Syimir</creatorcontrib><creatorcontrib>Muhamad Sarih, Norazilawati</creatorcontrib><creatorcontrib>Hossain, Md Sohrab</creatorcontrib><creatorcontrib>Osman, Hakimah</creatorcontrib><creatorcontrib>Khalil, Nor Afifah</creatorcontrib><creatorcontrib>Ahmad Yahaya, Ahmad Naim</creatorcontrib><creatorcontrib>Zulkifli, Muzafar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banjar, Mohd Faizar</au><au>Joynal Abedin, Fatin Najwa</au><au>Fizal, Ahmad Noor Syimir</au><au>Muhamad Sarih, Norazilawati</au><au>Hossain, Md Sohrab</au><au>Osman, Hakimah</au><au>Khalil, Nor Afifah</au><au>Ahmad Yahaya, Ahmad Naim</au><au>Zulkifli, Muzafar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and Characterization of a Novel Nanosized Polyaniline</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2023-11-29</date><risdate>2023</risdate><volume>15</volume><issue>23</issue><spage>4565</spage><pages>4565-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Polyaniline (PANI) is a conductive polymer easily converted into a conducting state. However, its limited mechanical properties have generated interest in fabricating PANI composites with other polymeric materials. In this study, a PANI-prevulcanized latex composite film was synthesized and fabricated in two phases following chronological steps. The first phase determined the following optimum parameters for synthesizing nanosized PANI, which were as follows: an initial molar ratio of 1, a stirring speed of 600 rpm, a synthesis temperature of 25 °C, purification via filtration, and washing using dopant acid, acetone, and distilled water. The use of a nonionic surfactant, Triton X-100, at 0.1% concentration favored PANI formation in a smaller particle size of approximately 600 nm and good dispersibility over seven days of observation compared to the use of anionic sodium dodecyl sulfate. Ultraviolet-visible spectroscopy (UV-Vis) showed that the PANI synthesized using a surfactant was in the emeraldine base form, as the washing process tends to decrease the doping level in the PANI backbone. Our scanning electron microscopy analysis showed that the optimized synthesis parameters produced colloidal PANI with an average particle size of 695 nm. This higher aspect ratio explained the higher conductivity of nanosized PANI compared to micron-sized PANI. Following the chronological steps to determine the optimal parameters produced a nanosized PANI powder. The nanosized PANI had higher conductivity than the micron-sized PANI because of its higher aspect ratio. When PANI is synthesized in smaller particle sizes, it has higher conductivity. Atomic force microscopy analysis showed that the current flow is higher across a 5 µm scanned area of nanosized PANI because it has a larger surface area. Thus, more sites for the current to flow through were present on the nanosized PANI particles.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38232004</pmid><doi>10.3390/polym15234565</doi><orcidid>https://orcid.org/0000-0001-9784-4901</orcidid><orcidid>https://orcid.org/0000-0002-1423-1075</orcidid><orcidid>https://orcid.org/0000-0002-3095-1574</orcidid><orcidid>https://orcid.org/0000-0002-6873-2588</orcidid><orcidid>https://orcid.org/0000-0002-0730-5718</orcidid><orcidid>https://orcid.org/0000-0002-8047-2299</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2023-11, Vol.15 (23), p.4565
issn 2073-4360
2073-4360
language eng
recordid cdi_proquest_miscellaneous_2916408899
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access
subjects Analysis
Aniline
Aspect ratio
Chemical synthesis
Composite materials
Conducting polymers
Distilled water
Fourier transforms
Identification and classification
Latex
Mechanical properties
Methods
Microscopy
Nanoparticles
Optimization
Parameters
Particle size
Polyanilines
Polymerization
Polymers
Properties
Scanning microscopy
Sodium dodecyl sulfate
Spectrum analysis
Surfactants
Synthesis
Textiles
Washing
title Synthesis and Characterization of a Novel Nanosized Polyaniline
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A16%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20Characterization%20of%20a%20Novel%20Nanosized%20Polyaniline&rft.jtitle=Polymers&rft.au=Banjar,%20Mohd%20Faizar&rft.date=2023-11-29&rft.volume=15&rft.issue=23&rft.spage=4565&rft.pages=4565-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym15234565&rft_dat=%3Cgale_proqu%3EA775891987%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899435551&rft_id=info:pmid/38232004&rft_galeid=A775891987&rfr_iscdi=true