Self-guided disentangled representation learning for single image dehazing

Image dehazing has received extensive research attention as images collected in hazy weather are limited by low visibility and information dropout. Recently, disentangled representation learning has made excellent progress in various vision tasks. However, existing networks for low-level vision task...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2024-04, Vol.172, p.106107-106107, Article 106107
Hauptverfasser: Jia, Tongyao, Li, Jiafeng, Zhuo, Li, Zhang, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106107
container_issue
container_start_page 106107
container_title Neural networks
container_volume 172
creator Jia, Tongyao
Li, Jiafeng
Zhuo, Li
Zhang, Jing
description Image dehazing has received extensive research attention as images collected in hazy weather are limited by low visibility and information dropout. Recently, disentangled representation learning has made excellent progress in various vision tasks. However, existing networks for low-level vision tasks lack efficient feature interaction and delivery mechanisms in the disentanglement process or an evaluation mechanism for the degree of decoupling in the reconstruction process, rendering direct application to image dehazing challenging. We propose a self-guided disentangled representation learning (SGDRL) algorithm with a self-guided disentangled network to realize multi-level progressive feature decoupling through sharing and interaction. The self-guided disentangled (SGD) network extracts image features using the multi-layer backbone network, and attribute features are weighted using the self-guided attention mechanism for the backbone features. In addition, we introduce a disentanglement-guided (DG) module to evaluate the degree of feature decomposition and guide the feature fusion process in the reconstruction stage. Accordingly, we develop SGDRL-based unsupervised and semi-supervised single image dehazing networks. Extensive experiments demonstrate the superiority of the proposed method for real-world image dehazing. The source code is available at https://github.com/dehazing/SGDRL.
doi_str_mv 10.1016/j.neunet.2024.106107
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2916408714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608024000212</els_id><sourcerecordid>2916408714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-9e8b8dae2da30326636fde02af1a50a8cbba3d4b2c2e613206d72a6f2066b9983</originalsourceid><addsrcrecordid>eNp9kEtPwzAMgCMEYmPwDxDqkUtHXqTpBQlNPDWJA3CO0sQtmbp0JC0S_HoyOjhyim19ju0PoVOC5wQTcbGaexg89HOKKU8lQXCxh6ZEFmVOC0n30RTLkuUCSzxBRzGuMMZCcnaIJkxSRjnlU_T4DG2dN4OzYDPrIvhe-6ZNSYBNgJ-8d53PWtDBO99kdRey6LZM5ta6gczCm_5KhWN0UOs2wsnunaHX25uXxX2-fLp7WFwvc8MI6fMSZCWtBmo1w4wKwURtAVNdE32JtTRVpZnlFTUUBGEUC1tQLeoUiKosJZuh8_HfTejeB4i9WrtooG21h26IipZEcCwLwhPKR9SELsYAtdqEtHT4VASrrUW1UqNFtbWoRoup7Ww3YajWYP-afrUl4GoEIN354SCoaBx4A9YFML2ynft_wjfGy4Wr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916408714</pqid></control><display><type>article</type><title>Self-guided disentangled representation learning for single image dehazing</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Jia, Tongyao ; Li, Jiafeng ; Zhuo, Li ; Zhang, Jing</creator><creatorcontrib>Jia, Tongyao ; Li, Jiafeng ; Zhuo, Li ; Zhang, Jing</creatorcontrib><description>Image dehazing has received extensive research attention as images collected in hazy weather are limited by low visibility and information dropout. Recently, disentangled representation learning has made excellent progress in various vision tasks. However, existing networks for low-level vision tasks lack efficient feature interaction and delivery mechanisms in the disentanglement process or an evaluation mechanism for the degree of decoupling in the reconstruction process, rendering direct application to image dehazing challenging. We propose a self-guided disentangled representation learning (SGDRL) algorithm with a self-guided disentangled network to realize multi-level progressive feature decoupling through sharing and interaction. The self-guided disentangled (SGD) network extracts image features using the multi-layer backbone network, and attribute features are weighted using the self-guided attention mechanism for the backbone features. In addition, we introduce a disentanglement-guided (DG) module to evaluate the degree of feature decomposition and guide the feature fusion process in the reconstruction stage. Accordingly, we develop SGDRL-based unsupervised and semi-supervised single image dehazing networks. Extensive experiments demonstrate the superiority of the proposed method for real-world image dehazing. The source code is available at https://github.com/dehazing/SGDRL.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2024.106107</identifier><identifier>PMID: 38232424</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Disentangled representation learning ; Self-guided network ; Single image dehazing</subject><ispartof>Neural networks, 2024-04, Vol.172, p.106107-106107, Article 106107</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-9e8b8dae2da30326636fde02af1a50a8cbba3d4b2c2e613206d72a6f2066b9983</cites><orcidid>0000-0001-6976-7275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0893608024000212$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38232424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, Tongyao</creatorcontrib><creatorcontrib>Li, Jiafeng</creatorcontrib><creatorcontrib>Zhuo, Li</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><title>Self-guided disentangled representation learning for single image dehazing</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Image dehazing has received extensive research attention as images collected in hazy weather are limited by low visibility and information dropout. Recently, disentangled representation learning has made excellent progress in various vision tasks. However, existing networks for low-level vision tasks lack efficient feature interaction and delivery mechanisms in the disentanglement process or an evaluation mechanism for the degree of decoupling in the reconstruction process, rendering direct application to image dehazing challenging. We propose a self-guided disentangled representation learning (SGDRL) algorithm with a self-guided disentangled network to realize multi-level progressive feature decoupling through sharing and interaction. The self-guided disentangled (SGD) network extracts image features using the multi-layer backbone network, and attribute features are weighted using the self-guided attention mechanism for the backbone features. In addition, we introduce a disentanglement-guided (DG) module to evaluate the degree of feature decomposition and guide the feature fusion process in the reconstruction stage. Accordingly, we develop SGDRL-based unsupervised and semi-supervised single image dehazing networks. Extensive experiments demonstrate the superiority of the proposed method for real-world image dehazing. The source code is available at https://github.com/dehazing/SGDRL.</description><subject>Disentangled representation learning</subject><subject>Self-guided network</subject><subject>Single image dehazing</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAMgCMEYmPwDxDqkUtHXqTpBQlNPDWJA3CO0sQtmbp0JC0S_HoyOjhyim19ju0PoVOC5wQTcbGaexg89HOKKU8lQXCxh6ZEFmVOC0n30RTLkuUCSzxBRzGuMMZCcnaIJkxSRjnlU_T4DG2dN4OzYDPrIvhe-6ZNSYBNgJ-8d53PWtDBO99kdRey6LZM5ta6gczCm_5KhWN0UOs2wsnunaHX25uXxX2-fLp7WFwvc8MI6fMSZCWtBmo1w4wKwURtAVNdE32JtTRVpZnlFTUUBGEUC1tQLeoUiKosJZuh8_HfTejeB4i9WrtooG21h26IipZEcCwLwhPKR9SELsYAtdqEtHT4VASrrUW1UqNFtbWoRoup7Ww3YajWYP-afrUl4GoEIN354SCoaBx4A9YFML2ynft_wjfGy4Wr</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Jia, Tongyao</creator><creator>Li, Jiafeng</creator><creator>Zhuo, Li</creator><creator>Zhang, Jing</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6976-7275</orcidid></search><sort><creationdate>202404</creationdate><title>Self-guided disentangled representation learning for single image dehazing</title><author>Jia, Tongyao ; Li, Jiafeng ; Zhuo, Li ; Zhang, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-9e8b8dae2da30326636fde02af1a50a8cbba3d4b2c2e613206d72a6f2066b9983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Disentangled representation learning</topic><topic>Self-guided network</topic><topic>Single image dehazing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Tongyao</creatorcontrib><creatorcontrib>Li, Jiafeng</creatorcontrib><creatorcontrib>Zhuo, Li</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Tongyao</au><au>Li, Jiafeng</au><au>Zhuo, Li</au><au>Zhang, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-guided disentangled representation learning for single image dehazing</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2024-04</date><risdate>2024</risdate><volume>172</volume><spage>106107</spage><epage>106107</epage><pages>106107-106107</pages><artnum>106107</artnum><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>Image dehazing has received extensive research attention as images collected in hazy weather are limited by low visibility and information dropout. Recently, disentangled representation learning has made excellent progress in various vision tasks. However, existing networks for low-level vision tasks lack efficient feature interaction and delivery mechanisms in the disentanglement process or an evaluation mechanism for the degree of decoupling in the reconstruction process, rendering direct application to image dehazing challenging. We propose a self-guided disentangled representation learning (SGDRL) algorithm with a self-guided disentangled network to realize multi-level progressive feature decoupling through sharing and interaction. The self-guided disentangled (SGD) network extracts image features using the multi-layer backbone network, and attribute features are weighted using the self-guided attention mechanism for the backbone features. In addition, we introduce a disentanglement-guided (DG) module to evaluate the degree of feature decomposition and guide the feature fusion process in the reconstruction stage. Accordingly, we develop SGDRL-based unsupervised and semi-supervised single image dehazing networks. Extensive experiments demonstrate the superiority of the proposed method for real-world image dehazing. The source code is available at https://github.com/dehazing/SGDRL.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>38232424</pmid><doi>10.1016/j.neunet.2024.106107</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6976-7275</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2024-04, Vol.172, p.106107-106107, Article 106107
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_2916408714
source Elsevier ScienceDirect Journals Complete
subjects Disentangled representation learning
Self-guided network
Single image dehazing
title Self-guided disentangled representation learning for single image dehazing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A46%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-guided%20disentangled%20representation%20learning%20for%20single%20image%20dehazing&rft.jtitle=Neural%20networks&rft.au=Jia,%20Tongyao&rft.date=2024-04&rft.volume=172&rft.spage=106107&rft.epage=106107&rft.pages=106107-106107&rft.artnum=106107&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2024.106107&rft_dat=%3Cproquest_cross%3E2916408714%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2916408714&rft_id=info:pmid/38232424&rft_els_id=S0893608024000212&rfr_iscdi=true