Stretching Bonds without Breaking Symmetries in Density Functional Theory
Kohn–Sham density functional theory (KS-DFT) stands out among electronic structure methods due to its balance of accuracy and computational efficiency. However, to achieve chemically accurate energies, standard density functional approximations in KS-DFT often need to break underlying symmetries, a...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2024-01, Vol.15 (3), p.826-833 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 833 |
---|---|
container_issue | 3 |
container_start_page | 826 |
container_title | The journal of physical chemistry letters |
container_volume | 15 |
creator | Shi, Yuming Shi, Yi Wasserman, Adam |
description | Kohn–Sham density functional theory (KS-DFT) stands out among electronic structure methods due to its balance of accuracy and computational efficiency. However, to achieve chemically accurate energies, standard density functional approximations in KS-DFT often need to break underlying symmetries, a long-standing “symmetry dilemma”. By employing fragment spin densities as the main variables in calculations (rather than total molecular densities, as in KS-DFT), we present an embedding framework in which this symmetry dilemma is understood and partially resolved. The spatial overlap between fragment densities is used as the main ingredient to construct a simple, physically motivated approximation to a universal functional of the fragment densities. This “overlap approximation” is shown to significantly improve semilocal KS-DFT binding energies of molecules without artificially breaking either charge or spin symmetries. The approach is shown to be applicable to covalently bonded molecules and to systems of the “strongly correlated” type. |
doi_str_mv | 10.1021/acs.jpclett.3c03073 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2916406572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916406572</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-7b5c39ead3fe81a8b617a9fa40f9269bb9002cef1cf957a6110dec5f8b4278a33</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBUgoSzZp_cjDXlKgUKkSi5Z15Dhj6pJHsR2h_D0pDYgVqxmNzr0jHYSuCZ4STMlMKjfd7VUJ3k-Zwgyn7ASNiYh4mBIen_7ZR-jCuR3GicA8PUcjximjjPAxWq69Ba-2pn4L5k1duODT-G3T-mBuQb4fzuuuqsBbAy4wdfAAtTO-CxZtrbxpalkGmy00trtEZ1qWDq6GOUGvi8fN_XO4enla3t-tQklF7MM0jxUTIAumgRPJ84SkUmgZYS1oIvJcYEwVaKK0iFOZEIILULHmeURTLhmboNtj7942Hy04n1XGKShLWUPTuowKkkQ4iVPao-yIKts4Z0Fne2sqabuM4OzgMOsdZoPDbHDYp26GB21eQfGb-ZHWA7Mj8J1uWttLcP9WfgEotYE-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916406572</pqid></control><display><type>article</type><title>Stretching Bonds without Breaking Symmetries in Density Functional Theory</title><source>ACS Publications</source><creator>Shi, Yuming ; Shi, Yi ; Wasserman, Adam</creator><creatorcontrib>Shi, Yuming ; Shi, Yi ; Wasserman, Adam</creatorcontrib><description>Kohn–Sham density functional theory (KS-DFT) stands out among electronic structure methods due to its balance of accuracy and computational efficiency. However, to achieve chemically accurate energies, standard density functional approximations in KS-DFT often need to break underlying symmetries, a long-standing “symmetry dilemma”. By employing fragment spin densities as the main variables in calculations (rather than total molecular densities, as in KS-DFT), we present an embedding framework in which this symmetry dilemma is understood and partially resolved. The spatial overlap between fragment densities is used as the main ingredient to construct a simple, physically motivated approximation to a universal functional of the fragment densities. This “overlap approximation” is shown to significantly improve semilocal KS-DFT binding energies of molecules without artificially breaking either charge or spin symmetries. The approach is shown to be applicable to covalently bonded molecules and to systems of the “strongly correlated” type.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.3c03073</identifier><identifier>PMID: 38232318</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Physical Insights into Quantum Phenomena and Function</subject><ispartof>The journal of physical chemistry letters, 2024-01, Vol.15 (3), p.826-833</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a295t-7b5c39ead3fe81a8b617a9fa40f9269bb9002cef1cf957a6110dec5f8b4278a33</cites><orcidid>0000-0002-8037-4453 ; 0009-0001-0552-1003 ; 0009-0009-7918-5821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.3c03073$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.3c03073$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38232318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Yuming</creatorcontrib><creatorcontrib>Shi, Yi</creatorcontrib><creatorcontrib>Wasserman, Adam</creatorcontrib><title>Stretching Bonds without Breaking Symmetries in Density Functional Theory</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Kohn–Sham density functional theory (KS-DFT) stands out among electronic structure methods due to its balance of accuracy and computational efficiency. However, to achieve chemically accurate energies, standard density functional approximations in KS-DFT often need to break underlying symmetries, a long-standing “symmetry dilemma”. By employing fragment spin densities as the main variables in calculations (rather than total molecular densities, as in KS-DFT), we present an embedding framework in which this symmetry dilemma is understood and partially resolved. The spatial overlap between fragment densities is used as the main ingredient to construct a simple, physically motivated approximation to a universal functional of the fragment densities. This “overlap approximation” is shown to significantly improve semilocal KS-DFT binding energies of molecules without artificially breaking either charge or spin symmetries. The approach is shown to be applicable to covalently bonded molecules and to systems of the “strongly correlated” type.</description><subject>Physical Insights into Quantum Phenomena and Function</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EoqXwBUgoSzZp_cjDXlKgUKkSi5Z15Dhj6pJHsR2h_D0pDYgVqxmNzr0jHYSuCZ4STMlMKjfd7VUJ3k-Zwgyn7ASNiYh4mBIen_7ZR-jCuR3GicA8PUcjximjjPAxWq69Ba-2pn4L5k1duODT-G3T-mBuQb4fzuuuqsBbAy4wdfAAtTO-CxZtrbxpalkGmy00trtEZ1qWDq6GOUGvi8fN_XO4enla3t-tQklF7MM0jxUTIAumgRPJ84SkUmgZYS1oIvJcYEwVaKK0iFOZEIILULHmeURTLhmboNtj7942Hy04n1XGKShLWUPTuowKkkQ4iVPao-yIKts4Z0Fne2sqabuM4OzgMOsdZoPDbHDYp26GB21eQfGb-ZHWA7Mj8J1uWttLcP9WfgEotYE-</recordid><startdate>20240125</startdate><enddate>20240125</enddate><creator>Shi, Yuming</creator><creator>Shi, Yi</creator><creator>Wasserman, Adam</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8037-4453</orcidid><orcidid>https://orcid.org/0009-0001-0552-1003</orcidid><orcidid>https://orcid.org/0009-0009-7918-5821</orcidid></search><sort><creationdate>20240125</creationdate><title>Stretching Bonds without Breaking Symmetries in Density Functional Theory</title><author>Shi, Yuming ; Shi, Yi ; Wasserman, Adam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-7b5c39ead3fe81a8b617a9fa40f9269bb9002cef1cf957a6110dec5f8b4278a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Physical Insights into Quantum Phenomena and Function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yuming</creatorcontrib><creatorcontrib>Shi, Yi</creatorcontrib><creatorcontrib>Wasserman, Adam</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yuming</au><au>Shi, Yi</au><au>Wasserman, Adam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stretching Bonds without Breaking Symmetries in Density Functional Theory</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2024-01-25</date><risdate>2024</risdate><volume>15</volume><issue>3</issue><spage>826</spage><epage>833</epage><pages>826-833</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Kohn–Sham density functional theory (KS-DFT) stands out among electronic structure methods due to its balance of accuracy and computational efficiency. However, to achieve chemically accurate energies, standard density functional approximations in KS-DFT often need to break underlying symmetries, a long-standing “symmetry dilemma”. By employing fragment spin densities as the main variables in calculations (rather than total molecular densities, as in KS-DFT), we present an embedding framework in which this symmetry dilemma is understood and partially resolved. The spatial overlap between fragment densities is used as the main ingredient to construct a simple, physically motivated approximation to a universal functional of the fragment densities. This “overlap approximation” is shown to significantly improve semilocal KS-DFT binding energies of molecules without artificially breaking either charge or spin symmetries. The approach is shown to be applicable to covalently bonded molecules and to systems of the “strongly correlated” type.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38232318</pmid><doi>10.1021/acs.jpclett.3c03073</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8037-4453</orcidid><orcidid>https://orcid.org/0009-0001-0552-1003</orcidid><orcidid>https://orcid.org/0009-0009-7918-5821</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2024-01, Vol.15 (3), p.826-833 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_proquest_miscellaneous_2916406572 |
source | ACS Publications |
subjects | Physical Insights into Quantum Phenomena and Function |
title | Stretching Bonds without Breaking Symmetries in Density Functional Theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stretching%20Bonds%20without%20Breaking%20Symmetries%20in%20Density%20Functional%20Theory&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Shi,%20Yuming&rft.date=2024-01-25&rft.volume=15&rft.issue=3&rft.spage=826&rft.epage=833&rft.pages=826-833&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.3c03073&rft_dat=%3Cproquest_cross%3E2916406572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2916406572&rft_id=info:pmid/38232318&rfr_iscdi=true |