Stretching Bonds without Breaking Symmetries in Density Functional Theory

Kohn–Sham density functional theory (KS-DFT) stands out among electronic structure methods due to its balance of accuracy and computational efficiency. However, to achieve chemically accurate energies, standard density functional approximations in KS-DFT often need to break underlying symmetries, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2024-01, Vol.15 (3), p.826-833
Hauptverfasser: Shi, Yuming, Shi, Yi, Wasserman, Adam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 833
container_issue 3
container_start_page 826
container_title The journal of physical chemistry letters
container_volume 15
creator Shi, Yuming
Shi, Yi
Wasserman, Adam
description Kohn–Sham density functional theory (KS-DFT) stands out among electronic structure methods due to its balance of accuracy and computational efficiency. However, to achieve chemically accurate energies, standard density functional approximations in KS-DFT often need to break underlying symmetries, a long-standing “symmetry dilemma”. By employing fragment spin densities as the main variables in calculations (rather than total molecular densities, as in KS-DFT), we present an embedding framework in which this symmetry dilemma is understood and partially resolved. The spatial overlap between fragment densities is used as the main ingredient to construct a simple, physically motivated approximation to a universal functional of the fragment densities. This “overlap approximation” is shown to significantly improve semilocal KS-DFT binding energies of molecules without artificially breaking either charge or spin symmetries. The approach is shown to be applicable to covalently bonded molecules and to systems of the “strongly correlated” type.
doi_str_mv 10.1021/acs.jpclett.3c03073
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2916406572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916406572</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-7b5c39ead3fe81a8b617a9fa40f9269bb9002cef1cf957a6110dec5f8b4278a33</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBUgoSzZp_cjDXlKgUKkSi5Z15Dhj6pJHsR2h_D0pDYgVqxmNzr0jHYSuCZ4STMlMKjfd7VUJ3k-Zwgyn7ASNiYh4mBIen_7ZR-jCuR3GicA8PUcjximjjPAxWq69Ba-2pn4L5k1duODT-G3T-mBuQb4fzuuuqsBbAy4wdfAAtTO-CxZtrbxpalkGmy00trtEZ1qWDq6GOUGvi8fN_XO4enla3t-tQklF7MM0jxUTIAumgRPJ84SkUmgZYS1oIvJcYEwVaKK0iFOZEIILULHmeURTLhmboNtj7942Hy04n1XGKShLWUPTuowKkkQ4iVPao-yIKts4Z0Fne2sqabuM4OzgMOsdZoPDbHDYp26GB21eQfGb-ZHWA7Mj8J1uWttLcP9WfgEotYE-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916406572</pqid></control><display><type>article</type><title>Stretching Bonds without Breaking Symmetries in Density Functional Theory</title><source>ACS Publications</source><creator>Shi, Yuming ; Shi, Yi ; Wasserman, Adam</creator><creatorcontrib>Shi, Yuming ; Shi, Yi ; Wasserman, Adam</creatorcontrib><description>Kohn–Sham density functional theory (KS-DFT) stands out among electronic structure methods due to its balance of accuracy and computational efficiency. However, to achieve chemically accurate energies, standard density functional approximations in KS-DFT often need to break underlying symmetries, a long-standing “symmetry dilemma”. By employing fragment spin densities as the main variables in calculations (rather than total molecular densities, as in KS-DFT), we present an embedding framework in which this symmetry dilemma is understood and partially resolved. The spatial overlap between fragment densities is used as the main ingredient to construct a simple, physically motivated approximation to a universal functional of the fragment densities. This “overlap approximation” is shown to significantly improve semilocal KS-DFT binding energies of molecules without artificially breaking either charge or spin symmetries. The approach is shown to be applicable to covalently bonded molecules and to systems of the “strongly correlated” type.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.3c03073</identifier><identifier>PMID: 38232318</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Physical Insights into Quantum Phenomena and Function</subject><ispartof>The journal of physical chemistry letters, 2024-01, Vol.15 (3), p.826-833</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a295t-7b5c39ead3fe81a8b617a9fa40f9269bb9002cef1cf957a6110dec5f8b4278a33</cites><orcidid>0000-0002-8037-4453 ; 0009-0001-0552-1003 ; 0009-0009-7918-5821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.3c03073$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.3c03073$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38232318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Yuming</creatorcontrib><creatorcontrib>Shi, Yi</creatorcontrib><creatorcontrib>Wasserman, Adam</creatorcontrib><title>Stretching Bonds without Breaking Symmetries in Density Functional Theory</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Kohn–Sham density functional theory (KS-DFT) stands out among electronic structure methods due to its balance of accuracy and computational efficiency. However, to achieve chemically accurate energies, standard density functional approximations in KS-DFT often need to break underlying symmetries, a long-standing “symmetry dilemma”. By employing fragment spin densities as the main variables in calculations (rather than total molecular densities, as in KS-DFT), we present an embedding framework in which this symmetry dilemma is understood and partially resolved. The spatial overlap between fragment densities is used as the main ingredient to construct a simple, physically motivated approximation to a universal functional of the fragment densities. This “overlap approximation” is shown to significantly improve semilocal KS-DFT binding energies of molecules without artificially breaking either charge or spin symmetries. The approach is shown to be applicable to covalently bonded molecules and to systems of the “strongly correlated” type.</description><subject>Physical Insights into Quantum Phenomena and Function</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EoqXwBUgoSzZp_cjDXlKgUKkSi5Z15Dhj6pJHsR2h_D0pDYgVqxmNzr0jHYSuCZ4STMlMKjfd7VUJ3k-Zwgyn7ASNiYh4mBIen_7ZR-jCuR3GicA8PUcjximjjPAxWq69Ba-2pn4L5k1duODT-G3T-mBuQb4fzuuuqsBbAy4wdfAAtTO-CxZtrbxpalkGmy00trtEZ1qWDq6GOUGvi8fN_XO4enla3t-tQklF7MM0jxUTIAumgRPJ84SkUmgZYS1oIvJcYEwVaKK0iFOZEIILULHmeURTLhmboNtj7942Hy04n1XGKShLWUPTuowKkkQ4iVPao-yIKts4Z0Fne2sqabuM4OzgMOsdZoPDbHDYp26GB21eQfGb-ZHWA7Mj8J1uWttLcP9WfgEotYE-</recordid><startdate>20240125</startdate><enddate>20240125</enddate><creator>Shi, Yuming</creator><creator>Shi, Yi</creator><creator>Wasserman, Adam</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8037-4453</orcidid><orcidid>https://orcid.org/0009-0001-0552-1003</orcidid><orcidid>https://orcid.org/0009-0009-7918-5821</orcidid></search><sort><creationdate>20240125</creationdate><title>Stretching Bonds without Breaking Symmetries in Density Functional Theory</title><author>Shi, Yuming ; Shi, Yi ; Wasserman, Adam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-7b5c39ead3fe81a8b617a9fa40f9269bb9002cef1cf957a6110dec5f8b4278a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Physical Insights into Quantum Phenomena and Function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yuming</creatorcontrib><creatorcontrib>Shi, Yi</creatorcontrib><creatorcontrib>Wasserman, Adam</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yuming</au><au>Shi, Yi</au><au>Wasserman, Adam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stretching Bonds without Breaking Symmetries in Density Functional Theory</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2024-01-25</date><risdate>2024</risdate><volume>15</volume><issue>3</issue><spage>826</spage><epage>833</epage><pages>826-833</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Kohn–Sham density functional theory (KS-DFT) stands out among electronic structure methods due to its balance of accuracy and computational efficiency. However, to achieve chemically accurate energies, standard density functional approximations in KS-DFT often need to break underlying symmetries, a long-standing “symmetry dilemma”. By employing fragment spin densities as the main variables in calculations (rather than total molecular densities, as in KS-DFT), we present an embedding framework in which this symmetry dilemma is understood and partially resolved. The spatial overlap between fragment densities is used as the main ingredient to construct a simple, physically motivated approximation to a universal functional of the fragment densities. This “overlap approximation” is shown to significantly improve semilocal KS-DFT binding energies of molecules without artificially breaking either charge or spin symmetries. The approach is shown to be applicable to covalently bonded molecules and to systems of the “strongly correlated” type.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38232318</pmid><doi>10.1021/acs.jpclett.3c03073</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8037-4453</orcidid><orcidid>https://orcid.org/0009-0001-0552-1003</orcidid><orcidid>https://orcid.org/0009-0009-7918-5821</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2024-01, Vol.15 (3), p.826-833
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_2916406572
source ACS Publications
subjects Physical Insights into Quantum Phenomena and Function
title Stretching Bonds without Breaking Symmetries in Density Functional Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stretching%20Bonds%20without%20Breaking%20Symmetries%20in%20Density%20Functional%20Theory&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Shi,%20Yuming&rft.date=2024-01-25&rft.volume=15&rft.issue=3&rft.spage=826&rft.epage=833&rft.pages=826-833&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.3c03073&rft_dat=%3Cproquest_cross%3E2916406572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2916406572&rft_id=info:pmid/38232318&rfr_iscdi=true