Convergence and round-off errors in a two-dimensional eigenvalue problem using spectral methods and Arnoldi–Chebyshev algorithm
An efficient way of solving 2D stability problems in fluid mechanics is to use, after discretization of the equations that cast the problem in the form of a generalized eigenvalue problem, the incomplete Arnoldi–Chebyshev method. This method preserves the banded structure sparsity of matrices of the...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2007-08, Vol.205 (1), p.382-393 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 393 |
---|---|
container_issue | 1 |
container_start_page | 382 |
container_title | Journal of computational and applied mathematics |
container_volume | 205 |
creator | Valdettaro, Lorenzo Rieutord, Michel Braconnier, Thierry Frayssé, Valérie |
description | An efficient way of solving 2D stability problems in fluid mechanics is to use, after discretization of the equations that cast the problem in the form of a generalized eigenvalue problem, the incomplete Arnoldi–Chebyshev method. This method preserves the banded structure sparsity of matrices of the algebraic eigenvalue problem and thus decreases memory use and CPU time consumption.
The errors that affect computed eigenvalues and eigenvectors are due to the truncation in the discretization and to finite precision in the computation of the discretized problem. In this paper we analyze those two errors and the interplay between them. We use as a test case the 2D eigenvalue problem yielded by the computation of inertial modes in a spherical shell. This problem contains many difficulties that make it a very good test case. It turns out that single modes (especially most-damped modes i.e. with high spatial frequency) can be very sensitive to roundoff errors, even when apparently good spectral convergence is achieved. The influence of roundoff errors is analyzed using the spectral portrait technique and by comparison of double precision and extended precision computations. Through the analysis we give practical recipes to control the truncation and roundoff errors on eigenvalues and eigenvectors. |
doi_str_mv | 10.1016/j.cam.2006.05.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29159945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042706003256</els_id><sourcerecordid>29159945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-2990be838a2f342ca95b7750e04beb6b682e8a30bd6363eb42b8761cf9d29d793</originalsourceid><addsrcrecordid>eNp9kLuO1DAUhi0EEsMuD0DnBroE23FiW1SrETdpJRqoLV9OZjxK7MFOBm3HPgNvyJOsh1mJbqvTfP9_zvkQekNJSwkd3h9aZ-aWETK0pG8JUc_QhkqhGiqEfI42pBOiIZyJl-hVKQdSQUX5Bt1vUzxB3kF0gE30OKc1-iaNI4acUy44RGzw8is1PswQS0jRTBhCTZzMtAI-5mQnmPFaQtzhcgS35ErMsOyTL_86b3JMkw9_f__Z7sHelT2csJl2KYdlP1-jF6OZCrx-nFfox6eP37dfmttvn79ub24bxwldGqYUsSA7adjYceaM6q0QPQHCLdjBDpKBNB2xfuiGDixnVoqBulF5prxQ3RV6d-mtB_9coSx6DsXBNJkIaS2aKdorxfsK0gvociolw6iPOcwm32lK9Fm2PugqW59la9LrKrtm3j6Wm-LMNGYTXSj_g1JwSRiv3IcLB_XTU4Csiwtn9z7kKk77FJ7Y8gDsH5gB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29159945</pqid></control><display><type>article</type><title>Convergence and round-off errors in a two-dimensional eigenvalue problem using spectral methods and Arnoldi–Chebyshev algorithm</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB Electronic Journals Library</source><creator>Valdettaro, Lorenzo ; Rieutord, Michel ; Braconnier, Thierry ; Frayssé, Valérie</creator><creatorcontrib>Valdettaro, Lorenzo ; Rieutord, Michel ; Braconnier, Thierry ; Frayssé, Valérie</creatorcontrib><description>An efficient way of solving 2D stability problems in fluid mechanics is to use, after discretization of the equations that cast the problem in the form of a generalized eigenvalue problem, the incomplete Arnoldi–Chebyshev method. This method preserves the banded structure sparsity of matrices of the algebraic eigenvalue problem and thus decreases memory use and CPU time consumption.
The errors that affect computed eigenvalues and eigenvectors are due to the truncation in the discretization and to finite precision in the computation of the discretized problem. In this paper we analyze those two errors and the interplay between them. We use as a test case the 2D eigenvalue problem yielded by the computation of inertial modes in a spherical shell. This problem contains many difficulties that make it a very good test case. It turns out that single modes (especially most-damped modes i.e. with high spatial frequency) can be very sensitive to roundoff errors, even when apparently good spectral convergence is achieved. The influence of roundoff errors is analyzed using the spectral portrait technique and by comparison of double precision and extended precision computations. Through the analysis we give practical recipes to control the truncation and roundoff errors on eigenvalues and eigenvectors.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2006.05.009</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Error analysis ; Exact sciences and technology ; Global analysis, analysis on manifolds ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Journal of computational and applied mathematics, 2007-08, Vol.205 (1), p.382-393</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-2990be838a2f342ca95b7750e04beb6b682e8a30bd6363eb42b8761cf9d29d793</citedby><cites>FETCH-LOGICAL-c401t-2990be838a2f342ca95b7750e04beb6b682e8a30bd6363eb42b8761cf9d29d793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377042706003256$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18748024$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Valdettaro, Lorenzo</creatorcontrib><creatorcontrib>Rieutord, Michel</creatorcontrib><creatorcontrib>Braconnier, Thierry</creatorcontrib><creatorcontrib>Frayssé, Valérie</creatorcontrib><title>Convergence and round-off errors in a two-dimensional eigenvalue problem using spectral methods and Arnoldi–Chebyshev algorithm</title><title>Journal of computational and applied mathematics</title><description>An efficient way of solving 2D stability problems in fluid mechanics is to use, after discretization of the equations that cast the problem in the form of a generalized eigenvalue problem, the incomplete Arnoldi–Chebyshev method. This method preserves the banded structure sparsity of matrices of the algebraic eigenvalue problem and thus decreases memory use and CPU time consumption.
The errors that affect computed eigenvalues and eigenvectors are due to the truncation in the discretization and to finite precision in the computation of the discretized problem. In this paper we analyze those two errors and the interplay between them. We use as a test case the 2D eigenvalue problem yielded by the computation of inertial modes in a spherical shell. This problem contains many difficulties that make it a very good test case. It turns out that single modes (especially most-damped modes i.e. with high spatial frequency) can be very sensitive to roundoff errors, even when apparently good spectral convergence is achieved. The influence of roundoff errors is analyzed using the spectral portrait technique and by comparison of double precision and extended precision computations. Through the analysis we give practical recipes to control the truncation and roundoff errors on eigenvalues and eigenvectors.</description><subject>Error analysis</subject><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kLuO1DAUhi0EEsMuD0DnBroE23FiW1SrETdpJRqoLV9OZjxK7MFOBm3HPgNvyJOsh1mJbqvTfP9_zvkQekNJSwkd3h9aZ-aWETK0pG8JUc_QhkqhGiqEfI42pBOiIZyJl-hVKQdSQUX5Bt1vUzxB3kF0gE30OKc1-iaNI4acUy44RGzw8is1PswQS0jRTBhCTZzMtAI-5mQnmPFaQtzhcgS35ErMsOyTL_86b3JMkw9_f__Z7sHelT2csJl2KYdlP1-jF6OZCrx-nFfox6eP37dfmttvn79ub24bxwldGqYUsSA7adjYceaM6q0QPQHCLdjBDpKBNB2xfuiGDixnVoqBulF5prxQ3RV6d-mtB_9coSx6DsXBNJkIaS2aKdorxfsK0gvociolw6iPOcwm32lK9Fm2PugqW59la9LrKrtm3j6Wm-LMNGYTXSj_g1JwSRiv3IcLB_XTU4Csiwtn9z7kKk77FJ7Y8gDsH5gB</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Valdettaro, Lorenzo</creator><creator>Rieutord, Michel</creator><creator>Braconnier, Thierry</creator><creator>Frayssé, Valérie</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070801</creationdate><title>Convergence and round-off errors in a two-dimensional eigenvalue problem using spectral methods and Arnoldi–Chebyshev algorithm</title><author>Valdettaro, Lorenzo ; Rieutord, Michel ; Braconnier, Thierry ; Frayssé, Valérie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-2990be838a2f342ca95b7750e04beb6b682e8a30bd6363eb42b8761cf9d29d793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Error analysis</topic><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valdettaro, Lorenzo</creatorcontrib><creatorcontrib>Rieutord, Michel</creatorcontrib><creatorcontrib>Braconnier, Thierry</creatorcontrib><creatorcontrib>Frayssé, Valérie</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valdettaro, Lorenzo</au><au>Rieutord, Michel</au><au>Braconnier, Thierry</au><au>Frayssé, Valérie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence and round-off errors in a two-dimensional eigenvalue problem using spectral methods and Arnoldi–Chebyshev algorithm</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2007-08-01</date><risdate>2007</risdate><volume>205</volume><issue>1</issue><spage>382</spage><epage>393</epage><pages>382-393</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>An efficient way of solving 2D stability problems in fluid mechanics is to use, after discretization of the equations that cast the problem in the form of a generalized eigenvalue problem, the incomplete Arnoldi–Chebyshev method. This method preserves the banded structure sparsity of matrices of the algebraic eigenvalue problem and thus decreases memory use and CPU time consumption.
The errors that affect computed eigenvalues and eigenvectors are due to the truncation in the discretization and to finite precision in the computation of the discretized problem. In this paper we analyze those two errors and the interplay between them. We use as a test case the 2D eigenvalue problem yielded by the computation of inertial modes in a spherical shell. This problem contains many difficulties that make it a very good test case. It turns out that single modes (especially most-damped modes i.e. with high spatial frequency) can be very sensitive to roundoff errors, even when apparently good spectral convergence is achieved. The influence of roundoff errors is analyzed using the spectral portrait technique and by comparison of double precision and extended precision computations. Through the analysis we give practical recipes to control the truncation and roundoff errors on eigenvalues and eigenvectors.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2006.05.009</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2007-08, Vol.205 (1), p.382-393 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_29159945 |
source | Elsevier ScienceDirect Journals Complete; EZB Electronic Journals Library |
subjects | Error analysis Exact sciences and technology Global analysis, analysis on manifolds Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Sciences and techniques of general use Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
title | Convergence and round-off errors in a two-dimensional eigenvalue problem using spectral methods and Arnoldi–Chebyshev algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T21%3A58%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20and%20round-off%20errors%20in%20a%20two-dimensional%20eigenvalue%20problem%20using%20spectral%20methods%20and%20Arnoldi%E2%80%93Chebyshev%20algorithm&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Valdettaro,%20Lorenzo&rft.date=2007-08-01&rft.volume=205&rft.issue=1&rft.spage=382&rft.epage=393&rft.pages=382-393&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2006.05.009&rft_dat=%3Cproquest_cross%3E29159945%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29159945&rft_id=info:pmid/&rft_els_id=S0377042706003256&rfr_iscdi=true |