Convergence and round-off errors in a two-dimensional eigenvalue problem using spectral methods and Arnoldi–Chebyshev algorithm

An efficient way of solving 2D stability problems in fluid mechanics is to use, after discretization of the equations that cast the problem in the form of a generalized eigenvalue problem, the incomplete Arnoldi–Chebyshev method. This method preserves the banded structure sparsity of matrices of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2007-08, Vol.205 (1), p.382-393
Hauptverfasser: Valdettaro, Lorenzo, Rieutord, Michel, Braconnier, Thierry, Frayssé, Valérie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 393
container_issue 1
container_start_page 382
container_title Journal of computational and applied mathematics
container_volume 205
creator Valdettaro, Lorenzo
Rieutord, Michel
Braconnier, Thierry
Frayssé, Valérie
description An efficient way of solving 2D stability problems in fluid mechanics is to use, after discretization of the equations that cast the problem in the form of a generalized eigenvalue problem, the incomplete Arnoldi–Chebyshev method. This method preserves the banded structure sparsity of matrices of the algebraic eigenvalue problem and thus decreases memory use and CPU time consumption. The errors that affect computed eigenvalues and eigenvectors are due to the truncation in the discretization and to finite precision in the computation of the discretized problem. In this paper we analyze those two errors and the interplay between them. We use as a test case the 2D eigenvalue problem yielded by the computation of inertial modes in a spherical shell. This problem contains many difficulties that make it a very good test case. It turns out that single modes (especially most-damped modes i.e. with high spatial frequency) can be very sensitive to roundoff errors, even when apparently good spectral convergence is achieved. The influence of roundoff errors is analyzed using the spectral portrait technique and by comparison of double precision and extended precision computations. Through the analysis we give practical recipes to control the truncation and roundoff errors on eigenvalues and eigenvectors.
doi_str_mv 10.1016/j.cam.2006.05.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29159945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042706003256</els_id><sourcerecordid>29159945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-2990be838a2f342ca95b7750e04beb6b682e8a30bd6363eb42b8761cf9d29d793</originalsourceid><addsrcrecordid>eNp9kLuO1DAUhi0EEsMuD0DnBroE23FiW1SrETdpJRqoLV9OZjxK7MFOBm3HPgNvyJOsh1mJbqvTfP9_zvkQekNJSwkd3h9aZ-aWETK0pG8JUc_QhkqhGiqEfI42pBOiIZyJl-hVKQdSQUX5Bt1vUzxB3kF0gE30OKc1-iaNI4acUy44RGzw8is1PswQS0jRTBhCTZzMtAI-5mQnmPFaQtzhcgS35ErMsOyTL_86b3JMkw9_f__Z7sHelT2csJl2KYdlP1-jF6OZCrx-nFfox6eP37dfmttvn79ub24bxwldGqYUsSA7adjYceaM6q0QPQHCLdjBDpKBNB2xfuiGDixnVoqBulF5prxQ3RV6d-mtB_9coSx6DsXBNJkIaS2aKdorxfsK0gvociolw6iPOcwm32lK9Fm2PugqW59la9LrKrtm3j6Wm-LMNGYTXSj_g1JwSRiv3IcLB_XTU4Csiwtn9z7kKk77FJ7Y8gDsH5gB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29159945</pqid></control><display><type>article</type><title>Convergence and round-off errors in a two-dimensional eigenvalue problem using spectral methods and Arnoldi–Chebyshev algorithm</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB Electronic Journals Library</source><creator>Valdettaro, Lorenzo ; Rieutord, Michel ; Braconnier, Thierry ; Frayssé, Valérie</creator><creatorcontrib>Valdettaro, Lorenzo ; Rieutord, Michel ; Braconnier, Thierry ; Frayssé, Valérie</creatorcontrib><description>An efficient way of solving 2D stability problems in fluid mechanics is to use, after discretization of the equations that cast the problem in the form of a generalized eigenvalue problem, the incomplete Arnoldi–Chebyshev method. This method preserves the banded structure sparsity of matrices of the algebraic eigenvalue problem and thus decreases memory use and CPU time consumption. The errors that affect computed eigenvalues and eigenvectors are due to the truncation in the discretization and to finite precision in the computation of the discretized problem. In this paper we analyze those two errors and the interplay between them. We use as a test case the 2D eigenvalue problem yielded by the computation of inertial modes in a spherical shell. This problem contains many difficulties that make it a very good test case. It turns out that single modes (especially most-damped modes i.e. with high spatial frequency) can be very sensitive to roundoff errors, even when apparently good spectral convergence is achieved. The influence of roundoff errors is analyzed using the spectral portrait technique and by comparison of double precision and extended precision computations. Through the analysis we give practical recipes to control the truncation and roundoff errors on eigenvalues and eigenvectors.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2006.05.009</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Error analysis ; Exact sciences and technology ; Global analysis, analysis on manifolds ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Journal of computational and applied mathematics, 2007-08, Vol.205 (1), p.382-393</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-2990be838a2f342ca95b7750e04beb6b682e8a30bd6363eb42b8761cf9d29d793</citedby><cites>FETCH-LOGICAL-c401t-2990be838a2f342ca95b7750e04beb6b682e8a30bd6363eb42b8761cf9d29d793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377042706003256$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18748024$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Valdettaro, Lorenzo</creatorcontrib><creatorcontrib>Rieutord, Michel</creatorcontrib><creatorcontrib>Braconnier, Thierry</creatorcontrib><creatorcontrib>Frayssé, Valérie</creatorcontrib><title>Convergence and round-off errors in a two-dimensional eigenvalue problem using spectral methods and Arnoldi–Chebyshev algorithm</title><title>Journal of computational and applied mathematics</title><description>An efficient way of solving 2D stability problems in fluid mechanics is to use, after discretization of the equations that cast the problem in the form of a generalized eigenvalue problem, the incomplete Arnoldi–Chebyshev method. This method preserves the banded structure sparsity of matrices of the algebraic eigenvalue problem and thus decreases memory use and CPU time consumption. The errors that affect computed eigenvalues and eigenvectors are due to the truncation in the discretization and to finite precision in the computation of the discretized problem. In this paper we analyze those two errors and the interplay between them. We use as a test case the 2D eigenvalue problem yielded by the computation of inertial modes in a spherical shell. This problem contains many difficulties that make it a very good test case. It turns out that single modes (especially most-damped modes i.e. with high spatial frequency) can be very sensitive to roundoff errors, even when apparently good spectral convergence is achieved. The influence of roundoff errors is analyzed using the spectral portrait technique and by comparison of double precision and extended precision computations. Through the analysis we give practical recipes to control the truncation and roundoff errors on eigenvalues and eigenvectors.</description><subject>Error analysis</subject><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kLuO1DAUhi0EEsMuD0DnBroE23FiW1SrETdpJRqoLV9OZjxK7MFOBm3HPgNvyJOsh1mJbqvTfP9_zvkQekNJSwkd3h9aZ-aWETK0pG8JUc_QhkqhGiqEfI42pBOiIZyJl-hVKQdSQUX5Bt1vUzxB3kF0gE30OKc1-iaNI4acUy44RGzw8is1PswQS0jRTBhCTZzMtAI-5mQnmPFaQtzhcgS35ErMsOyTL_86b3JMkw9_f__Z7sHelT2csJl2KYdlP1-jF6OZCrx-nFfox6eP37dfmttvn79ub24bxwldGqYUsSA7adjYceaM6q0QPQHCLdjBDpKBNB2xfuiGDixnVoqBulF5prxQ3RV6d-mtB_9coSx6DsXBNJkIaS2aKdorxfsK0gvociolw6iPOcwm32lK9Fm2PugqW59la9LrKrtm3j6Wm-LMNGYTXSj_g1JwSRiv3IcLB_XTU4Csiwtn9z7kKk77FJ7Y8gDsH5gB</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Valdettaro, Lorenzo</creator><creator>Rieutord, Michel</creator><creator>Braconnier, Thierry</creator><creator>Frayssé, Valérie</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070801</creationdate><title>Convergence and round-off errors in a two-dimensional eigenvalue problem using spectral methods and Arnoldi–Chebyshev algorithm</title><author>Valdettaro, Lorenzo ; Rieutord, Michel ; Braconnier, Thierry ; Frayssé, Valérie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-2990be838a2f342ca95b7750e04beb6b682e8a30bd6363eb42b8761cf9d29d793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Error analysis</topic><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valdettaro, Lorenzo</creatorcontrib><creatorcontrib>Rieutord, Michel</creatorcontrib><creatorcontrib>Braconnier, Thierry</creatorcontrib><creatorcontrib>Frayssé, Valérie</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valdettaro, Lorenzo</au><au>Rieutord, Michel</au><au>Braconnier, Thierry</au><au>Frayssé, Valérie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence and round-off errors in a two-dimensional eigenvalue problem using spectral methods and Arnoldi–Chebyshev algorithm</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2007-08-01</date><risdate>2007</risdate><volume>205</volume><issue>1</issue><spage>382</spage><epage>393</epage><pages>382-393</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>An efficient way of solving 2D stability problems in fluid mechanics is to use, after discretization of the equations that cast the problem in the form of a generalized eigenvalue problem, the incomplete Arnoldi–Chebyshev method. This method preserves the banded structure sparsity of matrices of the algebraic eigenvalue problem and thus decreases memory use and CPU time consumption. The errors that affect computed eigenvalues and eigenvectors are due to the truncation in the discretization and to finite precision in the computation of the discretized problem. In this paper we analyze those two errors and the interplay between them. We use as a test case the 2D eigenvalue problem yielded by the computation of inertial modes in a spherical shell. This problem contains many difficulties that make it a very good test case. It turns out that single modes (especially most-damped modes i.e. with high spatial frequency) can be very sensitive to roundoff errors, even when apparently good spectral convergence is achieved. The influence of roundoff errors is analyzed using the spectral portrait technique and by comparison of double precision and extended precision computations. Through the analysis we give practical recipes to control the truncation and roundoff errors on eigenvalues and eigenvectors.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2006.05.009</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2007-08, Vol.205 (1), p.382-393
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_29159945
source Elsevier ScienceDirect Journals Complete; EZB Electronic Journals Library
subjects Error analysis
Exact sciences and technology
Global analysis, analysis on manifolds
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Sciences and techniques of general use
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Convergence and round-off errors in a two-dimensional eigenvalue problem using spectral methods and Arnoldi–Chebyshev algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T21%3A58%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20and%20round-off%20errors%20in%20a%20two-dimensional%20eigenvalue%20problem%20using%20spectral%20methods%20and%20Arnoldi%E2%80%93Chebyshev%20algorithm&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Valdettaro,%20Lorenzo&rft.date=2007-08-01&rft.volume=205&rft.issue=1&rft.spage=382&rft.epage=393&rft.pages=382-393&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2006.05.009&rft_dat=%3Cproquest_cross%3E29159945%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29159945&rft_id=info:pmid/&rft_els_id=S0377042706003256&rfr_iscdi=true