Preparation and properties of phase-change materials with enhanced radial thermal conductivities based on anisotropic graphene aerogels
In this study, anisotropic graphene aerogels are prepared using the heat-flow method. Then, graphene aerogels with nanosilver particles are prepared via a silver mirror reaction. The aerogels are soaked in paraffin wax and the effects on the properties of the wax are investigated. The thermal conduc...
Gespeichert in:
Veröffentlicht in: | RSC advances 2024-01, Vol.14 (4), p.2763-2769 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2769 |
---|---|
container_issue | 4 |
container_start_page | 2763 |
container_title | RSC advances |
container_volume | 14 |
creator | Huang, Jinhui Sun, Xuejiao Liang, Bing Li, Ziyao Zheng, Danyang Yang, Banglong Xu, Jiatao Zhu, Yongchuang |
description | In this study, anisotropic graphene aerogels are prepared using the heat-flow method. Then, graphene aerogels with nanosilver particles are prepared
via
a silver mirror reaction. The aerogels are soaked in paraffin wax and the effects on the properties of the wax are investigated. The thermal conductivity of pure paraffin wax is 0.2553 W m
−1
K
−1
. For the prepared PCM, the aerogel content was 0.92 vol%; this increases to 1.2234 W m
−1
K
−1
, which corresponds to a thermal conductivity enhancement efficiency of 582%. The axial thermal conductivity is 1.4953 W m
−1
K
−1
, which corresponds to a thermal conductivity enhancement efficiency of 746%. The graphene aerogels with the nanosilver particles show high phase-change efficiency. Owing to the significant improvements in the axial and thermal conductivities, the radial and axial heat transfer properties show good consistency suitable for practical applications.
In this study, anisotropic graphene aerogels are prepared using the heat-flow method. |
doi_str_mv | 10.1039/d3ra06835h |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2915990676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915573277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-bc6604d6da9863842e65fec91bfa0a6fe6c330891815a97d44d9c6882a35b6333</originalsourceid><addsrcrecordid>eNpdkl1rFTEQhhdRbKm98V4JeFOE1XzsZpMrKfWjQkERvV5mk9mzKbvJmuRU_AX-bdNz6rGamwkzDw8T3lTVU0ZfMSr0aysiUKlEOz2ojjltZM2p1A_v3Y-q05SuaTmyZVyyx9WRUJzrjtPj6tfniCtEyC54At6SNYYVY3aYSBjJOkHC2kzgN0gWyBgdzIn8cHki6EvboCURbOmSPGFcSjXB263J7sbtLEMxWLKzuxRy0TtDNhHWCT0SwBg2OKcn1aOxmPH0rp5U396_-3pxWV99-vDx4vyqNkKpXA9GStpYaUErKVTDUbYjGs2GESjIEaURgirNFGtBd7ZprDZSKQ6iHaQQ4qR6s_eu22FBa9DnCHO_RrdA_NkHcP2_E--mfhNuekY7TTshi-HszhDD9y2m3C8uGZxn8Bi2qeeatVpT2d2iL_5Dr8M2-vK-HdV2gnddoV7uKRNDShHHwzaM9rcZ92_Fl_NdxpcFfn5__wP6J9ECPNsDMZnD9O8nEb8B4QCuuQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915573277</pqid></control><display><type>article</type><title>Preparation and properties of phase-change materials with enhanced radial thermal conductivities based on anisotropic graphene aerogels</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Huang, Jinhui ; Sun, Xuejiao ; Liang, Bing ; Li, Ziyao ; Zheng, Danyang ; Yang, Banglong ; Xu, Jiatao ; Zhu, Yongchuang</creator><creatorcontrib>Huang, Jinhui ; Sun, Xuejiao ; Liang, Bing ; Li, Ziyao ; Zheng, Danyang ; Yang, Banglong ; Xu, Jiatao ; Zhu, Yongchuang</creatorcontrib><description>In this study, anisotropic graphene aerogels are prepared using the heat-flow method. Then, graphene aerogels with nanosilver particles are prepared
via
a silver mirror reaction. The aerogels are soaked in paraffin wax and the effects on the properties of the wax are investigated. The thermal conductivity of pure paraffin wax is 0.2553 W m
−1
K
−1
. For the prepared PCM, the aerogel content was 0.92 vol%; this increases to 1.2234 W m
−1
K
−1
, which corresponds to a thermal conductivity enhancement efficiency of 582%. The axial thermal conductivity is 1.4953 W m
−1
K
−1
, which corresponds to a thermal conductivity enhancement efficiency of 746%. The graphene aerogels with the nanosilver particles show high phase-change efficiency. Owing to the significant improvements in the axial and thermal conductivities, the radial and axial heat transfer properties show good consistency suitable for practical applications.
In this study, anisotropic graphene aerogels are prepared using the heat-flow method.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d3ra06835h</identifier><identifier>PMID: 38229720</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Aerogels ; Chemistry ; Efficiency ; Graphene ; Heat transfer ; Heat transmission ; Paraffin wax ; Phase change materials ; Thermal conductivity</subject><ispartof>RSC advances, 2024-01, Vol.14 (4), p.2763-2769</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c388t-bc6604d6da9863842e65fec91bfa0a6fe6c330891815a97d44d9c6882a35b6333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10790736/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10790736/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38229720$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Jinhui</creatorcontrib><creatorcontrib>Sun, Xuejiao</creatorcontrib><creatorcontrib>Liang, Bing</creatorcontrib><creatorcontrib>Li, Ziyao</creatorcontrib><creatorcontrib>Zheng, Danyang</creatorcontrib><creatorcontrib>Yang, Banglong</creatorcontrib><creatorcontrib>Xu, Jiatao</creatorcontrib><creatorcontrib>Zhu, Yongchuang</creatorcontrib><title>Preparation and properties of phase-change materials with enhanced radial thermal conductivities based on anisotropic graphene aerogels</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>In this study, anisotropic graphene aerogels are prepared using the heat-flow method. Then, graphene aerogels with nanosilver particles are prepared
via
a silver mirror reaction. The aerogels are soaked in paraffin wax and the effects on the properties of the wax are investigated. The thermal conductivity of pure paraffin wax is 0.2553 W m
−1
K
−1
. For the prepared PCM, the aerogel content was 0.92 vol%; this increases to 1.2234 W m
−1
K
−1
, which corresponds to a thermal conductivity enhancement efficiency of 582%. The axial thermal conductivity is 1.4953 W m
−1
K
−1
, which corresponds to a thermal conductivity enhancement efficiency of 746%. The graphene aerogels with the nanosilver particles show high phase-change efficiency. Owing to the significant improvements in the axial and thermal conductivities, the radial and axial heat transfer properties show good consistency suitable for practical applications.
In this study, anisotropic graphene aerogels are prepared using the heat-flow method.</description><subject>Aerogels</subject><subject>Chemistry</subject><subject>Efficiency</subject><subject>Graphene</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Paraffin wax</subject><subject>Phase change materials</subject><subject>Thermal conductivity</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkl1rFTEQhhdRbKm98V4JeFOE1XzsZpMrKfWjQkERvV5mk9mzKbvJmuRU_AX-bdNz6rGamwkzDw8T3lTVU0ZfMSr0aysiUKlEOz2ojjltZM2p1A_v3Y-q05SuaTmyZVyyx9WRUJzrjtPj6tfniCtEyC54At6SNYYVY3aYSBjJOkHC2kzgN0gWyBgdzIn8cHki6EvboCURbOmSPGFcSjXB263J7sbtLEMxWLKzuxRy0TtDNhHWCT0SwBg2OKcn1aOxmPH0rp5U396_-3pxWV99-vDx4vyqNkKpXA9GStpYaUErKVTDUbYjGs2GESjIEaURgirNFGtBd7ZprDZSKQ6iHaQQ4qR6s_eu22FBa9DnCHO_RrdA_NkHcP2_E--mfhNuekY7TTshi-HszhDD9y2m3C8uGZxn8Bi2qeeatVpT2d2iL_5Dr8M2-vK-HdV2gnddoV7uKRNDShHHwzaM9rcZ92_Fl_NdxpcFfn5__wP6J9ECPNsDMZnD9O8nEb8B4QCuuQ</recordid><startdate>20240110</startdate><enddate>20240110</enddate><creator>Huang, Jinhui</creator><creator>Sun, Xuejiao</creator><creator>Liang, Bing</creator><creator>Li, Ziyao</creator><creator>Zheng, Danyang</creator><creator>Yang, Banglong</creator><creator>Xu, Jiatao</creator><creator>Zhu, Yongchuang</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240110</creationdate><title>Preparation and properties of phase-change materials with enhanced radial thermal conductivities based on anisotropic graphene aerogels</title><author>Huang, Jinhui ; Sun, Xuejiao ; Liang, Bing ; Li, Ziyao ; Zheng, Danyang ; Yang, Banglong ; Xu, Jiatao ; Zhu, Yongchuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-bc6604d6da9863842e65fec91bfa0a6fe6c330891815a97d44d9c6882a35b6333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerogels</topic><topic>Chemistry</topic><topic>Efficiency</topic><topic>Graphene</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Paraffin wax</topic><topic>Phase change materials</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jinhui</creatorcontrib><creatorcontrib>Sun, Xuejiao</creatorcontrib><creatorcontrib>Liang, Bing</creatorcontrib><creatorcontrib>Li, Ziyao</creatorcontrib><creatorcontrib>Zheng, Danyang</creatorcontrib><creatorcontrib>Yang, Banglong</creatorcontrib><creatorcontrib>Xu, Jiatao</creatorcontrib><creatorcontrib>Zhu, Yongchuang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jinhui</au><au>Sun, Xuejiao</au><au>Liang, Bing</au><au>Li, Ziyao</au><au>Zheng, Danyang</au><au>Yang, Banglong</au><au>Xu, Jiatao</au><au>Zhu, Yongchuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and properties of phase-change materials with enhanced radial thermal conductivities based on anisotropic graphene aerogels</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2024-01-10</date><risdate>2024</risdate><volume>14</volume><issue>4</issue><spage>2763</spage><epage>2769</epage><pages>2763-2769</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>In this study, anisotropic graphene aerogels are prepared using the heat-flow method. Then, graphene aerogels with nanosilver particles are prepared
via
a silver mirror reaction. The aerogels are soaked in paraffin wax and the effects on the properties of the wax are investigated. The thermal conductivity of pure paraffin wax is 0.2553 W m
−1
K
−1
. For the prepared PCM, the aerogel content was 0.92 vol%; this increases to 1.2234 W m
−1
K
−1
, which corresponds to a thermal conductivity enhancement efficiency of 582%. The axial thermal conductivity is 1.4953 W m
−1
K
−1
, which corresponds to a thermal conductivity enhancement efficiency of 746%. The graphene aerogels with the nanosilver particles show high phase-change efficiency. Owing to the significant improvements in the axial and thermal conductivities, the radial and axial heat transfer properties show good consistency suitable for practical applications.
In this study, anisotropic graphene aerogels are prepared using the heat-flow method.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38229720</pmid><doi>10.1039/d3ra06835h</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2024-01, Vol.14 (4), p.2763-2769 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_proquest_miscellaneous_2915990676 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Aerogels Chemistry Efficiency Graphene Heat transfer Heat transmission Paraffin wax Phase change materials Thermal conductivity |
title | Preparation and properties of phase-change materials with enhanced radial thermal conductivities based on anisotropic graphene aerogels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A36%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20properties%20of%20phase-change%20materials%20with%20enhanced%20radial%20thermal%20conductivities%20based%20on%20anisotropic%20graphene%20aerogels&rft.jtitle=RSC%20advances&rft.au=Huang,%20Jinhui&rft.date=2024-01-10&rft.volume=14&rft.issue=4&rft.spage=2763&rft.epage=2769&rft.pages=2763-2769&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d3ra06835h&rft_dat=%3Cproquest_pubme%3E2915573277%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915573277&rft_id=info:pmid/38229720&rfr_iscdi=true |