Preparation and properties of phase-change materials with enhanced radial thermal conductivities based on anisotropic graphene aerogels

In this study, anisotropic graphene aerogels are prepared using the heat-flow method. Then, graphene aerogels with nanosilver particles are prepared via a silver mirror reaction. The aerogels are soaked in paraffin wax and the effects on the properties of the wax are investigated. The thermal conduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2024-01, Vol.14 (4), p.2763-2769
Hauptverfasser: Huang, Jinhui, Sun, Xuejiao, Liang, Bing, Li, Ziyao, Zheng, Danyang, Yang, Banglong, Xu, Jiatao, Zhu, Yongchuang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2769
container_issue 4
container_start_page 2763
container_title RSC advances
container_volume 14
creator Huang, Jinhui
Sun, Xuejiao
Liang, Bing
Li, Ziyao
Zheng, Danyang
Yang, Banglong
Xu, Jiatao
Zhu, Yongchuang
description In this study, anisotropic graphene aerogels are prepared using the heat-flow method. Then, graphene aerogels with nanosilver particles are prepared via a silver mirror reaction. The aerogels are soaked in paraffin wax and the effects on the properties of the wax are investigated. The thermal conductivity of pure paraffin wax is 0.2553 W m −1 K −1 . For the prepared PCM, the aerogel content was 0.92 vol%; this increases to 1.2234 W m −1 K −1 , which corresponds to a thermal conductivity enhancement efficiency of 582%. The axial thermal conductivity is 1.4953 W m −1 K −1 , which corresponds to a thermal conductivity enhancement efficiency of 746%. The graphene aerogels with the nanosilver particles show high phase-change efficiency. Owing to the significant improvements in the axial and thermal conductivities, the radial and axial heat transfer properties show good consistency suitable for practical applications. In this study, anisotropic graphene aerogels are prepared using the heat-flow method.
doi_str_mv 10.1039/d3ra06835h
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2915990676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915573277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-bc6604d6da9863842e65fec91bfa0a6fe6c330891815a97d44d9c6882a35b6333</originalsourceid><addsrcrecordid>eNpdkl1rFTEQhhdRbKm98V4JeFOE1XzsZpMrKfWjQkERvV5mk9mzKbvJmuRU_AX-bdNz6rGamwkzDw8T3lTVU0ZfMSr0aysiUKlEOz2ojjltZM2p1A_v3Y-q05SuaTmyZVyyx9WRUJzrjtPj6tfniCtEyC54At6SNYYVY3aYSBjJOkHC2kzgN0gWyBgdzIn8cHki6EvboCURbOmSPGFcSjXB263J7sbtLEMxWLKzuxRy0TtDNhHWCT0SwBg2OKcn1aOxmPH0rp5U396_-3pxWV99-vDx4vyqNkKpXA9GStpYaUErKVTDUbYjGs2GESjIEaURgirNFGtBd7ZprDZSKQ6iHaQQ4qR6s_eu22FBa9DnCHO_RrdA_NkHcP2_E--mfhNuekY7TTshi-HszhDD9y2m3C8uGZxn8Bi2qeeatVpT2d2iL_5Dr8M2-vK-HdV2gnddoV7uKRNDShHHwzaM9rcZ92_Fl_NdxpcFfn5__wP6J9ECPNsDMZnD9O8nEb8B4QCuuQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915573277</pqid></control><display><type>article</type><title>Preparation and properties of phase-change materials with enhanced radial thermal conductivities based on anisotropic graphene aerogels</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Huang, Jinhui ; Sun, Xuejiao ; Liang, Bing ; Li, Ziyao ; Zheng, Danyang ; Yang, Banglong ; Xu, Jiatao ; Zhu, Yongchuang</creator><creatorcontrib>Huang, Jinhui ; Sun, Xuejiao ; Liang, Bing ; Li, Ziyao ; Zheng, Danyang ; Yang, Banglong ; Xu, Jiatao ; Zhu, Yongchuang</creatorcontrib><description>In this study, anisotropic graphene aerogels are prepared using the heat-flow method. Then, graphene aerogels with nanosilver particles are prepared via a silver mirror reaction. The aerogels are soaked in paraffin wax and the effects on the properties of the wax are investigated. The thermal conductivity of pure paraffin wax is 0.2553 W m −1 K −1 . For the prepared PCM, the aerogel content was 0.92 vol%; this increases to 1.2234 W m −1 K −1 , which corresponds to a thermal conductivity enhancement efficiency of 582%. The axial thermal conductivity is 1.4953 W m −1 K −1 , which corresponds to a thermal conductivity enhancement efficiency of 746%. The graphene aerogels with the nanosilver particles show high phase-change efficiency. Owing to the significant improvements in the axial and thermal conductivities, the radial and axial heat transfer properties show good consistency suitable for practical applications. In this study, anisotropic graphene aerogels are prepared using the heat-flow method.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d3ra06835h</identifier><identifier>PMID: 38229720</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Aerogels ; Chemistry ; Efficiency ; Graphene ; Heat transfer ; Heat transmission ; Paraffin wax ; Phase change materials ; Thermal conductivity</subject><ispartof>RSC advances, 2024-01, Vol.14 (4), p.2763-2769</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c388t-bc6604d6da9863842e65fec91bfa0a6fe6c330891815a97d44d9c6882a35b6333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10790736/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10790736/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38229720$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Jinhui</creatorcontrib><creatorcontrib>Sun, Xuejiao</creatorcontrib><creatorcontrib>Liang, Bing</creatorcontrib><creatorcontrib>Li, Ziyao</creatorcontrib><creatorcontrib>Zheng, Danyang</creatorcontrib><creatorcontrib>Yang, Banglong</creatorcontrib><creatorcontrib>Xu, Jiatao</creatorcontrib><creatorcontrib>Zhu, Yongchuang</creatorcontrib><title>Preparation and properties of phase-change materials with enhanced radial thermal conductivities based on anisotropic graphene aerogels</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>In this study, anisotropic graphene aerogels are prepared using the heat-flow method. Then, graphene aerogels with nanosilver particles are prepared via a silver mirror reaction. The aerogels are soaked in paraffin wax and the effects on the properties of the wax are investigated. The thermal conductivity of pure paraffin wax is 0.2553 W m −1 K −1 . For the prepared PCM, the aerogel content was 0.92 vol%; this increases to 1.2234 W m −1 K −1 , which corresponds to a thermal conductivity enhancement efficiency of 582%. The axial thermal conductivity is 1.4953 W m −1 K −1 , which corresponds to a thermal conductivity enhancement efficiency of 746%. The graphene aerogels with the nanosilver particles show high phase-change efficiency. Owing to the significant improvements in the axial and thermal conductivities, the radial and axial heat transfer properties show good consistency suitable for practical applications. In this study, anisotropic graphene aerogels are prepared using the heat-flow method.</description><subject>Aerogels</subject><subject>Chemistry</subject><subject>Efficiency</subject><subject>Graphene</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Paraffin wax</subject><subject>Phase change materials</subject><subject>Thermal conductivity</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkl1rFTEQhhdRbKm98V4JeFOE1XzsZpMrKfWjQkERvV5mk9mzKbvJmuRU_AX-bdNz6rGamwkzDw8T3lTVU0ZfMSr0aysiUKlEOz2ojjltZM2p1A_v3Y-q05SuaTmyZVyyx9WRUJzrjtPj6tfniCtEyC54At6SNYYVY3aYSBjJOkHC2kzgN0gWyBgdzIn8cHki6EvboCURbOmSPGFcSjXB263J7sbtLEMxWLKzuxRy0TtDNhHWCT0SwBg2OKcn1aOxmPH0rp5U396_-3pxWV99-vDx4vyqNkKpXA9GStpYaUErKVTDUbYjGs2GESjIEaURgirNFGtBd7ZprDZSKQ6iHaQQ4qR6s_eu22FBa9DnCHO_RrdA_NkHcP2_E--mfhNuekY7TTshi-HszhDD9y2m3C8uGZxn8Bi2qeeatVpT2d2iL_5Dr8M2-vK-HdV2gnddoV7uKRNDShHHwzaM9rcZ92_Fl_NdxpcFfn5__wP6J9ECPNsDMZnD9O8nEb8B4QCuuQ</recordid><startdate>20240110</startdate><enddate>20240110</enddate><creator>Huang, Jinhui</creator><creator>Sun, Xuejiao</creator><creator>Liang, Bing</creator><creator>Li, Ziyao</creator><creator>Zheng, Danyang</creator><creator>Yang, Banglong</creator><creator>Xu, Jiatao</creator><creator>Zhu, Yongchuang</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240110</creationdate><title>Preparation and properties of phase-change materials with enhanced radial thermal conductivities based on anisotropic graphene aerogels</title><author>Huang, Jinhui ; Sun, Xuejiao ; Liang, Bing ; Li, Ziyao ; Zheng, Danyang ; Yang, Banglong ; Xu, Jiatao ; Zhu, Yongchuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-bc6604d6da9863842e65fec91bfa0a6fe6c330891815a97d44d9c6882a35b6333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerogels</topic><topic>Chemistry</topic><topic>Efficiency</topic><topic>Graphene</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Paraffin wax</topic><topic>Phase change materials</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jinhui</creatorcontrib><creatorcontrib>Sun, Xuejiao</creatorcontrib><creatorcontrib>Liang, Bing</creatorcontrib><creatorcontrib>Li, Ziyao</creatorcontrib><creatorcontrib>Zheng, Danyang</creatorcontrib><creatorcontrib>Yang, Banglong</creatorcontrib><creatorcontrib>Xu, Jiatao</creatorcontrib><creatorcontrib>Zhu, Yongchuang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jinhui</au><au>Sun, Xuejiao</au><au>Liang, Bing</au><au>Li, Ziyao</au><au>Zheng, Danyang</au><au>Yang, Banglong</au><au>Xu, Jiatao</au><au>Zhu, Yongchuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and properties of phase-change materials with enhanced radial thermal conductivities based on anisotropic graphene aerogels</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2024-01-10</date><risdate>2024</risdate><volume>14</volume><issue>4</issue><spage>2763</spage><epage>2769</epage><pages>2763-2769</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>In this study, anisotropic graphene aerogels are prepared using the heat-flow method. Then, graphene aerogels with nanosilver particles are prepared via a silver mirror reaction. The aerogels are soaked in paraffin wax and the effects on the properties of the wax are investigated. The thermal conductivity of pure paraffin wax is 0.2553 W m −1 K −1 . For the prepared PCM, the aerogel content was 0.92 vol%; this increases to 1.2234 W m −1 K −1 , which corresponds to a thermal conductivity enhancement efficiency of 582%. The axial thermal conductivity is 1.4953 W m −1 K −1 , which corresponds to a thermal conductivity enhancement efficiency of 746%. The graphene aerogels with the nanosilver particles show high phase-change efficiency. Owing to the significant improvements in the axial and thermal conductivities, the radial and axial heat transfer properties show good consistency suitable for practical applications. In this study, anisotropic graphene aerogels are prepared using the heat-flow method.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38229720</pmid><doi>10.1039/d3ra06835h</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2024-01, Vol.14 (4), p.2763-2769
issn 2046-2069
2046-2069
language eng
recordid cdi_proquest_miscellaneous_2915990676
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Aerogels
Chemistry
Efficiency
Graphene
Heat transfer
Heat transmission
Paraffin wax
Phase change materials
Thermal conductivity
title Preparation and properties of phase-change materials with enhanced radial thermal conductivities based on anisotropic graphene aerogels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A36%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20properties%20of%20phase-change%20materials%20with%20enhanced%20radial%20thermal%20conductivities%20based%20on%20anisotropic%20graphene%20aerogels&rft.jtitle=RSC%20advances&rft.au=Huang,%20Jinhui&rft.date=2024-01-10&rft.volume=14&rft.issue=4&rft.spage=2763&rft.epage=2769&rft.pages=2763-2769&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d3ra06835h&rft_dat=%3Cproquest_pubme%3E2915573277%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915573277&rft_id=info:pmid/38229720&rfr_iscdi=true