Computational stochastic homogenization of random media elliptic problems using Fourier Galerkin method
In mechanics, research topics on probabilistic effects and combination of atomistic, statistical and continuum approaches are being identified as a future research direction. Challenges of complex multiscale interactions and limits of available tools provide an opportunity for probability theory and...
Gespeichert in:
Veröffentlicht in: | Finite elements in analysis and design 2006-04, Vol.42 (7), p.613-622 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 622 |
---|---|
container_issue | 7 |
container_start_page | 613 |
container_title | Finite elements in analysis and design |
container_volume | 42 |
creator | Xu, X. Frank Graham-Brady, Lori |
description | In mechanics, research topics on probabilistic effects and combination of atomistic, statistical and continuum approaches are being identified as a future research direction. Challenges of complex multiscale interactions and limits of available tools provide an opportunity for probability theory and stochastic processes, so far remained in the background, being brought to the frontier. As far as real problems characterized with non-periodic and random processes are concerned, stochastic homogenization has been mostly tackled with pure mathematical formulations without giving a practical computational recipe. To provide a numerical stochastic homogenization procedure, a recent attempt has been made by Xu and Graham-Brady [A stochastic computation method for evaluation of global and local behavior of random elastic media, Comput. Methods Appl. Mech. Eng. 194(42–44) (2005) 4362–4385] proposing a concept of stochastic representative volume element (SRVE). In this work, the SRVE concept is applied to general divergence-type stochastic partial differential equation (PDE), which is numerically solved with a numerical Fourier Galerkin recipe and the stochastic Galerkin method. This technique provides not only a means of global homogenization but also solution for statistical descriptors (such as variance) of the local solutions to such PDEs. A convergence study is conducted for the computing algorithm of Gaussian random media problems. |
doi_str_mv | 10.1016/j.finel.2005.11.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29157237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168874X05001551</els_id><sourcerecordid>29157237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-686ae068b7b11328a0c38394ffb9f2f6703901920cd2478d95ebb8cc7af4b7ed3</originalsourceid><addsrcrecordid>eNp90D1P3DAYwHGraqVeKZ-AxQuIJalfEr8MHdCpQCUkliKxWY7z-M5HEl_tBKn99Pg4JDYmD_49fqw_QmeU1JRQ8WNX-zDBUDNC2prSmhD-Ca2okqwSmrWf0aooVSnZPH5F33LekQKZaFZos47jfpntHOJkB5zn6LY2z8HhbRzjBqbw__UOR4-Tnfo44hH6YDEMQ9gf3D7FboAx4yWHaYOv45ICJHxjB0hPYSp83sb-O_ri7ZDh9O08QQ_Xv_6sb6u7-5vf66u7yjWCz5VQwgIRqpMdpZwpSxxXXDfed9ozLyThmlDNiOtZI1WvW-g65Zy0vukk9PwEXRzfLd_6u0CezRiyK5-1E8QlG6ZpKxmXBV5-CClRjEohG1ooP1KXYs4JvNmnMNr0ryBz6G925rW_OfQ3lJrSv0ydvy2w2dnBl3ou5PdR2WoimS7u59FByfJc0pnsAkyuVE7gZtPH8OGeFw9-nkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082176741</pqid></control><display><type>article</type><title>Computational stochastic homogenization of random media elliptic problems using Fourier Galerkin method</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Xu, X. Frank ; Graham-Brady, Lori</creator><creatorcontrib>Xu, X. Frank ; Graham-Brady, Lori</creatorcontrib><description>In mechanics, research topics on probabilistic effects and combination of atomistic, statistical and continuum approaches are being identified as a future research direction. Challenges of complex multiscale interactions and limits of available tools provide an opportunity for probability theory and stochastic processes, so far remained in the background, being brought to the frontier. As far as real problems characterized with non-periodic and random processes are concerned, stochastic homogenization has been mostly tackled with pure mathematical formulations without giving a practical computational recipe. To provide a numerical stochastic homogenization procedure, a recent attempt has been made by Xu and Graham-Brady [A stochastic computation method for evaluation of global and local behavior of random elastic media, Comput. Methods Appl. Mech. Eng. 194(42–44) (2005) 4362–4385] proposing a concept of stochastic representative volume element (SRVE). In this work, the SRVE concept is applied to general divergence-type stochastic partial differential equation (PDE), which is numerically solved with a numerical Fourier Galerkin recipe and the stochastic Galerkin method. This technique provides not only a means of global homogenization but also solution for statistical descriptors (such as variance) of the local solutions to such PDEs. A convergence study is conducted for the computing algorithm of Gaussian random media problems.</description><identifier>ISSN: 0168-874X</identifier><identifier>EISSN: 1872-6925</identifier><identifier>DOI: 10.1016/j.finel.2005.11.003</identifier><identifier>CODEN: FEADEU</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computation ; Computational techniques ; Exact sciences and technology ; Finite-element and galerkin methods ; Fundamental areas of phenomenology (including applications) ; Galerkin methods ; Homogenization ; Homogenizing ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Partial differential equations ; Physics ; Random heterogeneous materials ; Random media ; Solid mechanics ; Stochastic Galerkin method ; Stochastic homogenization ; Stochastic representative volume elementary ; Stochasticity ; Structural and continuum mechanics</subject><ispartof>Finite elements in analysis and design, 2006-04, Vol.42 (7), p.613-622</ispartof><rights>2005 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-686ae068b7b11328a0c38394ffb9f2f6703901920cd2478d95ebb8cc7af4b7ed3</citedby><cites>FETCH-LOGICAL-c463t-686ae068b7b11328a0c38394ffb9f2f6703901920cd2478d95ebb8cc7af4b7ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.finel.2005.11.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17590729$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, X. Frank</creatorcontrib><creatorcontrib>Graham-Brady, Lori</creatorcontrib><title>Computational stochastic homogenization of random media elliptic problems using Fourier Galerkin method</title><title>Finite elements in analysis and design</title><description>In mechanics, research topics on probabilistic effects and combination of atomistic, statistical and continuum approaches are being identified as a future research direction. Challenges of complex multiscale interactions and limits of available tools provide an opportunity for probability theory and stochastic processes, so far remained in the background, being brought to the frontier. As far as real problems characterized with non-periodic and random processes are concerned, stochastic homogenization has been mostly tackled with pure mathematical formulations without giving a practical computational recipe. To provide a numerical stochastic homogenization procedure, a recent attempt has been made by Xu and Graham-Brady [A stochastic computation method for evaluation of global and local behavior of random elastic media, Comput. Methods Appl. Mech. Eng. 194(42–44) (2005) 4362–4385] proposing a concept of stochastic representative volume element (SRVE). In this work, the SRVE concept is applied to general divergence-type stochastic partial differential equation (PDE), which is numerically solved with a numerical Fourier Galerkin recipe and the stochastic Galerkin method. This technique provides not only a means of global homogenization but also solution for statistical descriptors (such as variance) of the local solutions to such PDEs. A convergence study is conducted for the computing algorithm of Gaussian random media problems.</description><subject>Computation</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Finite-element and galerkin methods</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Galerkin methods</subject><subject>Homogenization</subject><subject>Homogenizing</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Random heterogeneous materials</subject><subject>Random media</subject><subject>Solid mechanics</subject><subject>Stochastic Galerkin method</subject><subject>Stochastic homogenization</subject><subject>Stochastic representative volume elementary</subject><subject>Stochasticity</subject><subject>Structural and continuum mechanics</subject><issn>0168-874X</issn><issn>1872-6925</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp90D1P3DAYwHGraqVeKZ-AxQuIJalfEr8MHdCpQCUkliKxWY7z-M5HEl_tBKn99Pg4JDYmD_49fqw_QmeU1JRQ8WNX-zDBUDNC2prSmhD-Ca2okqwSmrWf0aooVSnZPH5F33LekQKZaFZos47jfpntHOJkB5zn6LY2z8HhbRzjBqbw__UOR4-Tnfo44hH6YDEMQ9gf3D7FboAx4yWHaYOv45ICJHxjB0hPYSp83sb-O_ri7ZDh9O08QQ_Xv_6sb6u7-5vf66u7yjWCz5VQwgIRqpMdpZwpSxxXXDfed9ozLyThmlDNiOtZI1WvW-g65Zy0vukk9PwEXRzfLd_6u0CezRiyK5-1E8QlG6ZpKxmXBV5-CClRjEohG1ooP1KXYs4JvNmnMNr0ryBz6G925rW_OfQ3lJrSv0ydvy2w2dnBl3ou5PdR2WoimS7u59FByfJc0pnsAkyuVE7gZtPH8OGeFw9-nkw</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Xu, X. Frank</creator><creator>Graham-Brady, Lori</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060401</creationdate><title>Computational stochastic homogenization of random media elliptic problems using Fourier Galerkin method</title><author>Xu, X. Frank ; Graham-Brady, Lori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-686ae068b7b11328a0c38394ffb9f2f6703901920cd2478d95ebb8cc7af4b7ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Computation</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Finite-element and galerkin methods</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Galerkin methods</topic><topic>Homogenization</topic><topic>Homogenizing</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Random heterogeneous materials</topic><topic>Random media</topic><topic>Solid mechanics</topic><topic>Stochastic Galerkin method</topic><topic>Stochastic homogenization</topic><topic>Stochastic representative volume elementary</topic><topic>Stochasticity</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, X. Frank</creatorcontrib><creatorcontrib>Graham-Brady, Lori</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Finite elements in analysis and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, X. Frank</au><au>Graham-Brady, Lori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational stochastic homogenization of random media elliptic problems using Fourier Galerkin method</atitle><jtitle>Finite elements in analysis and design</jtitle><date>2006-04-01</date><risdate>2006</risdate><volume>42</volume><issue>7</issue><spage>613</spage><epage>622</epage><pages>613-622</pages><issn>0168-874X</issn><eissn>1872-6925</eissn><coden>FEADEU</coden><abstract>In mechanics, research topics on probabilistic effects and combination of atomistic, statistical and continuum approaches are being identified as a future research direction. Challenges of complex multiscale interactions and limits of available tools provide an opportunity for probability theory and stochastic processes, so far remained in the background, being brought to the frontier. As far as real problems characterized with non-periodic and random processes are concerned, stochastic homogenization has been mostly tackled with pure mathematical formulations without giving a practical computational recipe. To provide a numerical stochastic homogenization procedure, a recent attempt has been made by Xu and Graham-Brady [A stochastic computation method for evaluation of global and local behavior of random elastic media, Comput. Methods Appl. Mech. Eng. 194(42–44) (2005) 4362–4385] proposing a concept of stochastic representative volume element (SRVE). In this work, the SRVE concept is applied to general divergence-type stochastic partial differential equation (PDE), which is numerically solved with a numerical Fourier Galerkin recipe and the stochastic Galerkin method. This technique provides not only a means of global homogenization but also solution for statistical descriptors (such as variance) of the local solutions to such PDEs. A convergence study is conducted for the computing algorithm of Gaussian random media problems.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.finel.2005.11.003</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-874X |
ispartof | Finite elements in analysis and design, 2006-04, Vol.42 (7), p.613-622 |
issn | 0168-874X 1872-6925 |
language | eng |
recordid | cdi_proquest_miscellaneous_29157237 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Computation Computational techniques Exact sciences and technology Finite-element and galerkin methods Fundamental areas of phenomenology (including applications) Galerkin methods Homogenization Homogenizing Mathematical analysis Mathematical methods in physics Mathematical models Partial differential equations Physics Random heterogeneous materials Random media Solid mechanics Stochastic Galerkin method Stochastic homogenization Stochastic representative volume elementary Stochasticity Structural and continuum mechanics |
title | Computational stochastic homogenization of random media elliptic problems using Fourier Galerkin method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A43%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20stochastic%20homogenization%20of%20random%20media%20elliptic%20problems%20using%20Fourier%20Galerkin%20method&rft.jtitle=Finite%20elements%20in%20analysis%20and%20design&rft.au=Xu,%20X.%20Frank&rft.date=2006-04-01&rft.volume=42&rft.issue=7&rft.spage=613&rft.epage=622&rft.pages=613-622&rft.issn=0168-874X&rft.eissn=1872-6925&rft.coden=FEADEU&rft_id=info:doi/10.1016/j.finel.2005.11.003&rft_dat=%3Cproquest_cross%3E29157237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082176741&rft_id=info:pmid/&rft_els_id=S0168874X05001551&rfr_iscdi=true |