Breaking boundaries in radiology: redefining AI diagnostics via raw data ahead of reconstruction
In the realm of utilizing artificial intelligence (AI) for medical image analysis, the paradigm of 'signal-image-knowledge' has remained unchanged. However, the process of 'signal to image' inevitably introduces information distortion, ultimately leading to irrecoverable biases i...
Gespeichert in:
Veröffentlicht in: | Physics in medicine & biology 2024-04, Vol.69 (7), p.75015 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 75015 |
container_title | Physics in medicine & biology |
container_volume | 69 |
creator | He, Bingxi Sun, Caixia Li, Hailin Wang, Yongbo She, Yunlang Zhao, Mengmeng Fang, Mengjie Zhu, Yongbei Wang, Kun Liu, Zhenyu Wei, Ziqi Mu, Wei Wang, Shuo Tang, Zhenchao Wei, Jingwei Shao, Lizhi Tong, Lixia Huang, Feng Tang, Mingze Guo, Yu Zhang, Huimao Dong, Di Chen, Chang Ma, Jianhua Tian, Jie |
description | In the realm of utilizing artificial intelligence (AI) for medical image analysis, the paradigm of 'signal-image-knowledge' has remained unchanged. However, the process of 'signal to image' inevitably introduces information distortion, ultimately leading to irrecoverable biases in the 'image to knowledge' process. Our goal is to skip reconstruction and build a diagnostic model directly from the raw data (signal).
. This study focuses on computed tomography (CT) and its raw data (sinogram) as the research subjects. We simulate the real-world process of 'human-signal-image' using the workflow 'CT-simulated data- reconstructed CT,' and we develop a novel AI predictive model directly targeting raw data (RCTM). This model comprises orientation, spatial, and global analysis modules, embodying the fusion of local to global information extraction from raw data. We selected 1994 patients with retrospective cases of solid lung nodules and modeled different types of data.
. We employed predefined radiomic features to assess the diagnostic feature differences caused by reconstruction. The results indicated that approximately 14% of the features had Spearman correlation coefficients below 0.8. These findings suggest that despite the increasing maturity of CT reconstruction algorithms, they still introduce perturbations to diagnostic features. Moreover, our proposed RCTM achieved an area under the curve (AUC) of 0.863 in the diagnosis task, showcasing a comprehensive superiority over models constructed from secondary reconstructed CTs (0.840, 0.822, and 0.825). Additionally, the performance of RCTM closely resembled that of models constructed from original CT scans (0.868, 0.878, and 0.866).
. The diagnostic and therapeutic approach directly based on CT raw data can enhance the precision of AI models and the concept of 'signal-to-image' can be extended to other types of imaging. AI diagnostic models tailored to raw data offer the potential to disrupt the traditional paradigm of 'signal-image-knowledge', opening up new avenues for more accurate medical diagnostics. |
doi_str_mv | 10.1088/1361-6560/ad1e7c |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2915570929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915570929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-9e9bb824f83bd9aa4bce4b2690245faeaaf376270eb3fbb4bd9c8f8bfa0cef173</originalsourceid><addsrcrecordid>eNp9kE1PGzEQhi3UioSUOyfkW3tgi73ez95SVGikSFzg7I7tcXCa2Ft7l4p_z64COVU9jTR63lczDyEXnH3lrGmuuah4VpUVuwbDsdYnZH5cfSBzxgTPWl6WM3KW0pYxzpu8OCUz0eR5UfF6Tn59jwi_nd9QFQZvIDpM1HkawbiwC5uXbzSiQev8xCxX1DjY-JB6pxN9djCCf6mBHig8IRga7Mjr4FMfB9274D-RjxZ2Cc_f5oI83v54uPmZre_vVjfLdaZFJfqsxVap8TjbCGVagEJpLFRetSwvSgsIYEVd5TVDJaxSxQjpxjbKAtNoeS0W5Muht4vhz4Cpl3uXNO524DEMSeaTh5q1eTui7IDqGFKKaGUX3R7ii-RMTl7lJFFOEuXB6xi5fGsf1B7NMfAucgSuDoALndyGIfrx2f_1ff4H3u2VrFpZS1aXjJeyM1a8Ak8fkUE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915570929</pqid></control><display><type>article</type><title>Breaking boundaries in radiology: redefining AI diagnostics via raw data ahead of reconstruction</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>He, Bingxi ; Sun, Caixia ; Li, Hailin ; Wang, Yongbo ; She, Yunlang ; Zhao, Mengmeng ; Fang, Mengjie ; Zhu, Yongbei ; Wang, Kun ; Liu, Zhenyu ; Wei, Ziqi ; Mu, Wei ; Wang, Shuo ; Tang, Zhenchao ; Wei, Jingwei ; Shao, Lizhi ; Tong, Lixia ; Huang, Feng ; Tang, Mingze ; Guo, Yu ; Zhang, Huimao ; Dong, Di ; Chen, Chang ; Ma, Jianhua ; Tian, Jie</creator><creatorcontrib>He, Bingxi ; Sun, Caixia ; Li, Hailin ; Wang, Yongbo ; She, Yunlang ; Zhao, Mengmeng ; Fang, Mengjie ; Zhu, Yongbei ; Wang, Kun ; Liu, Zhenyu ; Wei, Ziqi ; Mu, Wei ; Wang, Shuo ; Tang, Zhenchao ; Wei, Jingwei ; Shao, Lizhi ; Tong, Lixia ; Huang, Feng ; Tang, Mingze ; Guo, Yu ; Zhang, Huimao ; Dong, Di ; Chen, Chang ; Ma, Jianhua ; Tian, Jie</creatorcontrib><description>In the realm of utilizing artificial intelligence (AI) for medical image analysis, the paradigm of 'signal-image-knowledge' has remained unchanged. However, the process of 'signal to image' inevitably introduces information distortion, ultimately leading to irrecoverable biases in the 'image to knowledge' process. Our goal is to skip reconstruction and build a diagnostic model directly from the raw data (signal).
. This study focuses on computed tomography (CT) and its raw data (sinogram) as the research subjects. We simulate the real-world process of 'human-signal-image' using the workflow 'CT-simulated data- reconstructed CT,' and we develop a novel AI predictive model directly targeting raw data (RCTM). This model comprises orientation, spatial, and global analysis modules, embodying the fusion of local to global information extraction from raw data. We selected 1994 patients with retrospective cases of solid lung nodules and modeled different types of data.
. We employed predefined radiomic features to assess the diagnostic feature differences caused by reconstruction. The results indicated that approximately 14% of the features had Spearman correlation coefficients below 0.8. These findings suggest that despite the increasing maturity of CT reconstruction algorithms, they still introduce perturbations to diagnostic features. Moreover, our proposed RCTM achieved an area under the curve (AUC) of 0.863 in the diagnosis task, showcasing a comprehensive superiority over models constructed from secondary reconstructed CTs (0.840, 0.822, and 0.825). Additionally, the performance of RCTM closely resembled that of models constructed from original CT scans (0.868, 0.878, and 0.866).
. The diagnostic and therapeutic approach directly based on CT raw data can enhance the precision of AI models and the concept of 'signal-to-image' can be extended to other types of imaging. AI diagnostic models tailored to raw data offer the potential to disrupt the traditional paradigm of 'signal-image-knowledge', opening up new avenues for more accurate medical diagnostics.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/ad1e7c</identifier><identifier>PMID: 38224617</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>CT scans ; deep learning ; lung cancer ; raw data ; sinogram</subject><ispartof>Physics in medicine & biology, 2024-04, Vol.69 (7), p.75015</ispartof><rights>2024 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c363t-9e9bb824f83bd9aa4bce4b2690245faeaaf376270eb3fbb4bd9c8f8bfa0cef173</cites><orcidid>0000-0003-0498-0432 ; 0000-0002-9981-3110 ; 0000-0003-2958-1710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/ad1e7c/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38224617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Bingxi</creatorcontrib><creatorcontrib>Sun, Caixia</creatorcontrib><creatorcontrib>Li, Hailin</creatorcontrib><creatorcontrib>Wang, Yongbo</creatorcontrib><creatorcontrib>She, Yunlang</creatorcontrib><creatorcontrib>Zhao, Mengmeng</creatorcontrib><creatorcontrib>Fang, Mengjie</creatorcontrib><creatorcontrib>Zhu, Yongbei</creatorcontrib><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Liu, Zhenyu</creatorcontrib><creatorcontrib>Wei, Ziqi</creatorcontrib><creatorcontrib>Mu, Wei</creatorcontrib><creatorcontrib>Wang, Shuo</creatorcontrib><creatorcontrib>Tang, Zhenchao</creatorcontrib><creatorcontrib>Wei, Jingwei</creatorcontrib><creatorcontrib>Shao, Lizhi</creatorcontrib><creatorcontrib>Tong, Lixia</creatorcontrib><creatorcontrib>Huang, Feng</creatorcontrib><creatorcontrib>Tang, Mingze</creatorcontrib><creatorcontrib>Guo, Yu</creatorcontrib><creatorcontrib>Zhang, Huimao</creatorcontrib><creatorcontrib>Dong, Di</creatorcontrib><creatorcontrib>Chen, Chang</creatorcontrib><creatorcontrib>Ma, Jianhua</creatorcontrib><creatorcontrib>Tian, Jie</creatorcontrib><title>Breaking boundaries in radiology: redefining AI diagnostics via raw data ahead of reconstruction</title><title>Physics in medicine & biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>In the realm of utilizing artificial intelligence (AI) for medical image analysis, the paradigm of 'signal-image-knowledge' has remained unchanged. However, the process of 'signal to image' inevitably introduces information distortion, ultimately leading to irrecoverable biases in the 'image to knowledge' process. Our goal is to skip reconstruction and build a diagnostic model directly from the raw data (signal).
. This study focuses on computed tomography (CT) and its raw data (sinogram) as the research subjects. We simulate the real-world process of 'human-signal-image' using the workflow 'CT-simulated data- reconstructed CT,' and we develop a novel AI predictive model directly targeting raw data (RCTM). This model comprises orientation, spatial, and global analysis modules, embodying the fusion of local to global information extraction from raw data. We selected 1994 patients with retrospective cases of solid lung nodules and modeled different types of data.
. We employed predefined radiomic features to assess the diagnostic feature differences caused by reconstruction. The results indicated that approximately 14% of the features had Spearman correlation coefficients below 0.8. These findings suggest that despite the increasing maturity of CT reconstruction algorithms, they still introduce perturbations to diagnostic features. Moreover, our proposed RCTM achieved an area under the curve (AUC) of 0.863 in the diagnosis task, showcasing a comprehensive superiority over models constructed from secondary reconstructed CTs (0.840, 0.822, and 0.825). Additionally, the performance of RCTM closely resembled that of models constructed from original CT scans (0.868, 0.878, and 0.866).
. The diagnostic and therapeutic approach directly based on CT raw data can enhance the precision of AI models and the concept of 'signal-to-image' can be extended to other types of imaging. AI diagnostic models tailored to raw data offer the potential to disrupt the traditional paradigm of 'signal-image-knowledge', opening up new avenues for more accurate medical diagnostics.</description><subject>CT scans</subject><subject>deep learning</subject><subject>lung cancer</subject><subject>raw data</subject><subject>sinogram</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9kE1PGzEQhi3UioSUOyfkW3tgi73ez95SVGikSFzg7I7tcXCa2Ft7l4p_z64COVU9jTR63lczDyEXnH3lrGmuuah4VpUVuwbDsdYnZH5cfSBzxgTPWl6WM3KW0pYxzpu8OCUz0eR5UfF6Tn59jwi_nd9QFQZvIDpM1HkawbiwC5uXbzSiQev8xCxX1DjY-JB6pxN9djCCf6mBHig8IRga7Mjr4FMfB9274D-RjxZ2Cc_f5oI83v54uPmZre_vVjfLdaZFJfqsxVap8TjbCGVagEJpLFRetSwvSgsIYEVd5TVDJaxSxQjpxjbKAtNoeS0W5Muht4vhz4Cpl3uXNO524DEMSeaTh5q1eTui7IDqGFKKaGUX3R7ii-RMTl7lJFFOEuXB6xi5fGsf1B7NMfAucgSuDoALndyGIfrx2f_1ff4H3u2VrFpZS1aXjJeyM1a8Ak8fkUE</recordid><startdate>20240407</startdate><enddate>20240407</enddate><creator>He, Bingxi</creator><creator>Sun, Caixia</creator><creator>Li, Hailin</creator><creator>Wang, Yongbo</creator><creator>She, Yunlang</creator><creator>Zhao, Mengmeng</creator><creator>Fang, Mengjie</creator><creator>Zhu, Yongbei</creator><creator>Wang, Kun</creator><creator>Liu, Zhenyu</creator><creator>Wei, Ziqi</creator><creator>Mu, Wei</creator><creator>Wang, Shuo</creator><creator>Tang, Zhenchao</creator><creator>Wei, Jingwei</creator><creator>Shao, Lizhi</creator><creator>Tong, Lixia</creator><creator>Huang, Feng</creator><creator>Tang, Mingze</creator><creator>Guo, Yu</creator><creator>Zhang, Huimao</creator><creator>Dong, Di</creator><creator>Chen, Chang</creator><creator>Ma, Jianhua</creator><creator>Tian, Jie</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0498-0432</orcidid><orcidid>https://orcid.org/0000-0002-9981-3110</orcidid><orcidid>https://orcid.org/0000-0003-2958-1710</orcidid></search><sort><creationdate>20240407</creationdate><title>Breaking boundaries in radiology: redefining AI diagnostics via raw data ahead of reconstruction</title><author>He, Bingxi ; Sun, Caixia ; Li, Hailin ; Wang, Yongbo ; She, Yunlang ; Zhao, Mengmeng ; Fang, Mengjie ; Zhu, Yongbei ; Wang, Kun ; Liu, Zhenyu ; Wei, Ziqi ; Mu, Wei ; Wang, Shuo ; Tang, Zhenchao ; Wei, Jingwei ; Shao, Lizhi ; Tong, Lixia ; Huang, Feng ; Tang, Mingze ; Guo, Yu ; Zhang, Huimao ; Dong, Di ; Chen, Chang ; Ma, Jianhua ; Tian, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-9e9bb824f83bd9aa4bce4b2690245faeaaf376270eb3fbb4bd9c8f8bfa0cef173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CT scans</topic><topic>deep learning</topic><topic>lung cancer</topic><topic>raw data</topic><topic>sinogram</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Bingxi</creatorcontrib><creatorcontrib>Sun, Caixia</creatorcontrib><creatorcontrib>Li, Hailin</creatorcontrib><creatorcontrib>Wang, Yongbo</creatorcontrib><creatorcontrib>She, Yunlang</creatorcontrib><creatorcontrib>Zhao, Mengmeng</creatorcontrib><creatorcontrib>Fang, Mengjie</creatorcontrib><creatorcontrib>Zhu, Yongbei</creatorcontrib><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Liu, Zhenyu</creatorcontrib><creatorcontrib>Wei, Ziqi</creatorcontrib><creatorcontrib>Mu, Wei</creatorcontrib><creatorcontrib>Wang, Shuo</creatorcontrib><creatorcontrib>Tang, Zhenchao</creatorcontrib><creatorcontrib>Wei, Jingwei</creatorcontrib><creatorcontrib>Shao, Lizhi</creatorcontrib><creatorcontrib>Tong, Lixia</creatorcontrib><creatorcontrib>Huang, Feng</creatorcontrib><creatorcontrib>Tang, Mingze</creatorcontrib><creatorcontrib>Guo, Yu</creatorcontrib><creatorcontrib>Zhang, Huimao</creatorcontrib><creatorcontrib>Dong, Di</creatorcontrib><creatorcontrib>Chen, Chang</creatorcontrib><creatorcontrib>Ma, Jianhua</creatorcontrib><creatorcontrib>Tian, Jie</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Bingxi</au><au>Sun, Caixia</au><au>Li, Hailin</au><au>Wang, Yongbo</au><au>She, Yunlang</au><au>Zhao, Mengmeng</au><au>Fang, Mengjie</au><au>Zhu, Yongbei</au><au>Wang, Kun</au><au>Liu, Zhenyu</au><au>Wei, Ziqi</au><au>Mu, Wei</au><au>Wang, Shuo</au><au>Tang, Zhenchao</au><au>Wei, Jingwei</au><au>Shao, Lizhi</au><au>Tong, Lixia</au><au>Huang, Feng</au><au>Tang, Mingze</au><au>Guo, Yu</au><au>Zhang, Huimao</au><au>Dong, Di</au><au>Chen, Chang</au><au>Ma, Jianhua</au><au>Tian, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breaking boundaries in radiology: redefining AI diagnostics via raw data ahead of reconstruction</atitle><jtitle>Physics in medicine & biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2024-04-07</date><risdate>2024</risdate><volume>69</volume><issue>7</issue><spage>75015</spage><pages>75015-</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>In the realm of utilizing artificial intelligence (AI) for medical image analysis, the paradigm of 'signal-image-knowledge' has remained unchanged. However, the process of 'signal to image' inevitably introduces information distortion, ultimately leading to irrecoverable biases in the 'image to knowledge' process. Our goal is to skip reconstruction and build a diagnostic model directly from the raw data (signal).
. This study focuses on computed tomography (CT) and its raw data (sinogram) as the research subjects. We simulate the real-world process of 'human-signal-image' using the workflow 'CT-simulated data- reconstructed CT,' and we develop a novel AI predictive model directly targeting raw data (RCTM). This model comprises orientation, spatial, and global analysis modules, embodying the fusion of local to global information extraction from raw data. We selected 1994 patients with retrospective cases of solid lung nodules and modeled different types of data.
. We employed predefined radiomic features to assess the diagnostic feature differences caused by reconstruction. The results indicated that approximately 14% of the features had Spearman correlation coefficients below 0.8. These findings suggest that despite the increasing maturity of CT reconstruction algorithms, they still introduce perturbations to diagnostic features. Moreover, our proposed RCTM achieved an area under the curve (AUC) of 0.863 in the diagnosis task, showcasing a comprehensive superiority over models constructed from secondary reconstructed CTs (0.840, 0.822, and 0.825). Additionally, the performance of RCTM closely resembled that of models constructed from original CT scans (0.868, 0.878, and 0.866).
. The diagnostic and therapeutic approach directly based on CT raw data can enhance the precision of AI models and the concept of 'signal-to-image' can be extended to other types of imaging. AI diagnostic models tailored to raw data offer the potential to disrupt the traditional paradigm of 'signal-image-knowledge', opening up new avenues for more accurate medical diagnostics.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>38224617</pmid><doi>10.1088/1361-6560/ad1e7c</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0498-0432</orcidid><orcidid>https://orcid.org/0000-0002-9981-3110</orcidid><orcidid>https://orcid.org/0000-0003-2958-1710</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9155 |
ispartof | Physics in medicine & biology, 2024-04, Vol.69 (7), p.75015 |
issn | 0031-9155 1361-6560 |
language | eng |
recordid | cdi_proquest_miscellaneous_2915570929 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | CT scans deep learning lung cancer raw data sinogram |
title | Breaking boundaries in radiology: redefining AI diagnostics via raw data ahead of reconstruction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A19%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breaking%20boundaries%20in%20radiology:%20redefining%20AI%20diagnostics%20via%20raw%20data%20ahead%20of%20reconstruction&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=He,%20Bingxi&rft.date=2024-04-07&rft.volume=69&rft.issue=7&rft.spage=75015&rft.pages=75015-&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/ad1e7c&rft_dat=%3Cproquest_cross%3E2915570929%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915570929&rft_id=info:pmid/38224617&rfr_iscdi=true |