Breaking boundaries in radiology: redefining AI diagnostics via raw data ahead of reconstruction

In the realm of utilizing artificial intelligence (AI) for medical image analysis, the paradigm of 'signal-image-knowledge' has remained unchanged. However, the process of 'signal to image' inevitably introduces information distortion, ultimately leading to irrecoverable biases i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2024-04, Vol.69 (7), p.75015
Hauptverfasser: He, Bingxi, Sun, Caixia, Li, Hailin, Wang, Yongbo, She, Yunlang, Zhao, Mengmeng, Fang, Mengjie, Zhu, Yongbei, Wang, Kun, Liu, Zhenyu, Wei, Ziqi, Mu, Wei, Wang, Shuo, Tang, Zhenchao, Wei, Jingwei, Shao, Lizhi, Tong, Lixia, Huang, Feng, Tang, Mingze, Guo, Yu, Zhang, Huimao, Dong, Di, Chen, Chang, Ma, Jianhua, Tian, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 75015
container_title Physics in medicine & biology
container_volume 69
creator He, Bingxi
Sun, Caixia
Li, Hailin
Wang, Yongbo
She, Yunlang
Zhao, Mengmeng
Fang, Mengjie
Zhu, Yongbei
Wang, Kun
Liu, Zhenyu
Wei, Ziqi
Mu, Wei
Wang, Shuo
Tang, Zhenchao
Wei, Jingwei
Shao, Lizhi
Tong, Lixia
Huang, Feng
Tang, Mingze
Guo, Yu
Zhang, Huimao
Dong, Di
Chen, Chang
Ma, Jianhua
Tian, Jie
description In the realm of utilizing artificial intelligence (AI) for medical image analysis, the paradigm of 'signal-image-knowledge' has remained unchanged. However, the process of 'signal to image' inevitably introduces information distortion, ultimately leading to irrecoverable biases in the 'image to knowledge' process. Our goal is to skip reconstruction and build a diagnostic model directly from the raw data (signal). . This study focuses on computed tomography (CT) and its raw data (sinogram) as the research subjects. We simulate the real-world process of 'human-signal-image' using the workflow 'CT-simulated data- reconstructed CT,' and we develop a novel AI predictive model directly targeting raw data (RCTM). This model comprises orientation, spatial, and global analysis modules, embodying the fusion of local to global information extraction from raw data. We selected 1994 patients with retrospective cases of solid lung nodules and modeled different types of data. . We employed predefined radiomic features to assess the diagnostic feature differences caused by reconstruction. The results indicated that approximately 14% of the features had Spearman correlation coefficients below 0.8. These findings suggest that despite the increasing maturity of CT reconstruction algorithms, they still introduce perturbations to diagnostic features. Moreover, our proposed RCTM achieved an area under the curve (AUC) of 0.863 in the diagnosis task, showcasing a comprehensive superiority over models constructed from secondary reconstructed CTs (0.840, 0.822, and 0.825). Additionally, the performance of RCTM closely resembled that of models constructed from original CT scans (0.868, 0.878, and 0.866). . The diagnostic and therapeutic approach directly based on CT raw data can enhance the precision of AI models and the concept of 'signal-to-image' can be extended to other types of imaging. AI diagnostic models tailored to raw data offer the potential to disrupt the traditional paradigm of 'signal-image-knowledge', opening up new avenues for more accurate medical diagnostics.
doi_str_mv 10.1088/1361-6560/ad1e7c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2915570929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915570929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-9e9bb824f83bd9aa4bce4b2690245faeaaf376270eb3fbb4bd9c8f8bfa0cef173</originalsourceid><addsrcrecordid>eNp9kE1PGzEQhi3UioSUOyfkW3tgi73ez95SVGikSFzg7I7tcXCa2Ft7l4p_z64COVU9jTR63lczDyEXnH3lrGmuuah4VpUVuwbDsdYnZH5cfSBzxgTPWl6WM3KW0pYxzpu8OCUz0eR5UfF6Tn59jwi_nd9QFQZvIDpM1HkawbiwC5uXbzSiQev8xCxX1DjY-JB6pxN9djCCf6mBHig8IRga7Mjr4FMfB9274D-RjxZ2Cc_f5oI83v54uPmZre_vVjfLdaZFJfqsxVap8TjbCGVagEJpLFRetSwvSgsIYEVd5TVDJaxSxQjpxjbKAtNoeS0W5Muht4vhz4Cpl3uXNO524DEMSeaTh5q1eTui7IDqGFKKaGUX3R7ii-RMTl7lJFFOEuXB6xi5fGsf1B7NMfAucgSuDoALndyGIfrx2f_1ff4H3u2VrFpZS1aXjJeyM1a8Ak8fkUE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915570929</pqid></control><display><type>article</type><title>Breaking boundaries in radiology: redefining AI diagnostics via raw data ahead of reconstruction</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>He, Bingxi ; Sun, Caixia ; Li, Hailin ; Wang, Yongbo ; She, Yunlang ; Zhao, Mengmeng ; Fang, Mengjie ; Zhu, Yongbei ; Wang, Kun ; Liu, Zhenyu ; Wei, Ziqi ; Mu, Wei ; Wang, Shuo ; Tang, Zhenchao ; Wei, Jingwei ; Shao, Lizhi ; Tong, Lixia ; Huang, Feng ; Tang, Mingze ; Guo, Yu ; Zhang, Huimao ; Dong, Di ; Chen, Chang ; Ma, Jianhua ; Tian, Jie</creator><creatorcontrib>He, Bingxi ; Sun, Caixia ; Li, Hailin ; Wang, Yongbo ; She, Yunlang ; Zhao, Mengmeng ; Fang, Mengjie ; Zhu, Yongbei ; Wang, Kun ; Liu, Zhenyu ; Wei, Ziqi ; Mu, Wei ; Wang, Shuo ; Tang, Zhenchao ; Wei, Jingwei ; Shao, Lizhi ; Tong, Lixia ; Huang, Feng ; Tang, Mingze ; Guo, Yu ; Zhang, Huimao ; Dong, Di ; Chen, Chang ; Ma, Jianhua ; Tian, Jie</creatorcontrib><description>In the realm of utilizing artificial intelligence (AI) for medical image analysis, the paradigm of 'signal-image-knowledge' has remained unchanged. However, the process of 'signal to image' inevitably introduces information distortion, ultimately leading to irrecoverable biases in the 'image to knowledge' process. Our goal is to skip reconstruction and build a diagnostic model directly from the raw data (signal). . This study focuses on computed tomography (CT) and its raw data (sinogram) as the research subjects. We simulate the real-world process of 'human-signal-image' using the workflow 'CT-simulated data- reconstructed CT,' and we develop a novel AI predictive model directly targeting raw data (RCTM). This model comprises orientation, spatial, and global analysis modules, embodying the fusion of local to global information extraction from raw data. We selected 1994 patients with retrospective cases of solid lung nodules and modeled different types of data. . We employed predefined radiomic features to assess the diagnostic feature differences caused by reconstruction. The results indicated that approximately 14% of the features had Spearman correlation coefficients below 0.8. These findings suggest that despite the increasing maturity of CT reconstruction algorithms, they still introduce perturbations to diagnostic features. Moreover, our proposed RCTM achieved an area under the curve (AUC) of 0.863 in the diagnosis task, showcasing a comprehensive superiority over models constructed from secondary reconstructed CTs (0.840, 0.822, and 0.825). Additionally, the performance of RCTM closely resembled that of models constructed from original CT scans (0.868, 0.878, and 0.866). . The diagnostic and therapeutic approach directly based on CT raw data can enhance the precision of AI models and the concept of 'signal-to-image' can be extended to other types of imaging. AI diagnostic models tailored to raw data offer the potential to disrupt the traditional paradigm of 'signal-image-knowledge', opening up new avenues for more accurate medical diagnostics.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/ad1e7c</identifier><identifier>PMID: 38224617</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>CT scans ; deep learning ; lung cancer ; raw data ; sinogram</subject><ispartof>Physics in medicine &amp; biology, 2024-04, Vol.69 (7), p.75015</ispartof><rights>2024 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c363t-9e9bb824f83bd9aa4bce4b2690245faeaaf376270eb3fbb4bd9c8f8bfa0cef173</cites><orcidid>0000-0003-0498-0432 ; 0000-0002-9981-3110 ; 0000-0003-2958-1710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/ad1e7c/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38224617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Bingxi</creatorcontrib><creatorcontrib>Sun, Caixia</creatorcontrib><creatorcontrib>Li, Hailin</creatorcontrib><creatorcontrib>Wang, Yongbo</creatorcontrib><creatorcontrib>She, Yunlang</creatorcontrib><creatorcontrib>Zhao, Mengmeng</creatorcontrib><creatorcontrib>Fang, Mengjie</creatorcontrib><creatorcontrib>Zhu, Yongbei</creatorcontrib><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Liu, Zhenyu</creatorcontrib><creatorcontrib>Wei, Ziqi</creatorcontrib><creatorcontrib>Mu, Wei</creatorcontrib><creatorcontrib>Wang, Shuo</creatorcontrib><creatorcontrib>Tang, Zhenchao</creatorcontrib><creatorcontrib>Wei, Jingwei</creatorcontrib><creatorcontrib>Shao, Lizhi</creatorcontrib><creatorcontrib>Tong, Lixia</creatorcontrib><creatorcontrib>Huang, Feng</creatorcontrib><creatorcontrib>Tang, Mingze</creatorcontrib><creatorcontrib>Guo, Yu</creatorcontrib><creatorcontrib>Zhang, Huimao</creatorcontrib><creatorcontrib>Dong, Di</creatorcontrib><creatorcontrib>Chen, Chang</creatorcontrib><creatorcontrib>Ma, Jianhua</creatorcontrib><creatorcontrib>Tian, Jie</creatorcontrib><title>Breaking boundaries in radiology: redefining AI diagnostics via raw data ahead of reconstruction</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>In the realm of utilizing artificial intelligence (AI) for medical image analysis, the paradigm of 'signal-image-knowledge' has remained unchanged. However, the process of 'signal to image' inevitably introduces information distortion, ultimately leading to irrecoverable biases in the 'image to knowledge' process. Our goal is to skip reconstruction and build a diagnostic model directly from the raw data (signal). . This study focuses on computed tomography (CT) and its raw data (sinogram) as the research subjects. We simulate the real-world process of 'human-signal-image' using the workflow 'CT-simulated data- reconstructed CT,' and we develop a novel AI predictive model directly targeting raw data (RCTM). This model comprises orientation, spatial, and global analysis modules, embodying the fusion of local to global information extraction from raw data. We selected 1994 patients with retrospective cases of solid lung nodules and modeled different types of data. . We employed predefined radiomic features to assess the diagnostic feature differences caused by reconstruction. The results indicated that approximately 14% of the features had Spearman correlation coefficients below 0.8. These findings suggest that despite the increasing maturity of CT reconstruction algorithms, they still introduce perturbations to diagnostic features. Moreover, our proposed RCTM achieved an area under the curve (AUC) of 0.863 in the diagnosis task, showcasing a comprehensive superiority over models constructed from secondary reconstructed CTs (0.840, 0.822, and 0.825). Additionally, the performance of RCTM closely resembled that of models constructed from original CT scans (0.868, 0.878, and 0.866). . The diagnostic and therapeutic approach directly based on CT raw data can enhance the precision of AI models and the concept of 'signal-to-image' can be extended to other types of imaging. AI diagnostic models tailored to raw data offer the potential to disrupt the traditional paradigm of 'signal-image-knowledge', opening up new avenues for more accurate medical diagnostics.</description><subject>CT scans</subject><subject>deep learning</subject><subject>lung cancer</subject><subject>raw data</subject><subject>sinogram</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9kE1PGzEQhi3UioSUOyfkW3tgi73ez95SVGikSFzg7I7tcXCa2Ft7l4p_z64COVU9jTR63lczDyEXnH3lrGmuuah4VpUVuwbDsdYnZH5cfSBzxgTPWl6WM3KW0pYxzpu8OCUz0eR5UfF6Tn59jwi_nd9QFQZvIDpM1HkawbiwC5uXbzSiQev8xCxX1DjY-JB6pxN9djCCf6mBHig8IRga7Mjr4FMfB9274D-RjxZ2Cc_f5oI83v54uPmZre_vVjfLdaZFJfqsxVap8TjbCGVagEJpLFRetSwvSgsIYEVd5TVDJaxSxQjpxjbKAtNoeS0W5Muht4vhz4Cpl3uXNO524DEMSeaTh5q1eTui7IDqGFKKaGUX3R7ii-RMTl7lJFFOEuXB6xi5fGsf1B7NMfAucgSuDoALndyGIfrx2f_1ff4H3u2VrFpZS1aXjJeyM1a8Ak8fkUE</recordid><startdate>20240407</startdate><enddate>20240407</enddate><creator>He, Bingxi</creator><creator>Sun, Caixia</creator><creator>Li, Hailin</creator><creator>Wang, Yongbo</creator><creator>She, Yunlang</creator><creator>Zhao, Mengmeng</creator><creator>Fang, Mengjie</creator><creator>Zhu, Yongbei</creator><creator>Wang, Kun</creator><creator>Liu, Zhenyu</creator><creator>Wei, Ziqi</creator><creator>Mu, Wei</creator><creator>Wang, Shuo</creator><creator>Tang, Zhenchao</creator><creator>Wei, Jingwei</creator><creator>Shao, Lizhi</creator><creator>Tong, Lixia</creator><creator>Huang, Feng</creator><creator>Tang, Mingze</creator><creator>Guo, Yu</creator><creator>Zhang, Huimao</creator><creator>Dong, Di</creator><creator>Chen, Chang</creator><creator>Ma, Jianhua</creator><creator>Tian, Jie</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0498-0432</orcidid><orcidid>https://orcid.org/0000-0002-9981-3110</orcidid><orcidid>https://orcid.org/0000-0003-2958-1710</orcidid></search><sort><creationdate>20240407</creationdate><title>Breaking boundaries in radiology: redefining AI diagnostics via raw data ahead of reconstruction</title><author>He, Bingxi ; Sun, Caixia ; Li, Hailin ; Wang, Yongbo ; She, Yunlang ; Zhao, Mengmeng ; Fang, Mengjie ; Zhu, Yongbei ; Wang, Kun ; Liu, Zhenyu ; Wei, Ziqi ; Mu, Wei ; Wang, Shuo ; Tang, Zhenchao ; Wei, Jingwei ; Shao, Lizhi ; Tong, Lixia ; Huang, Feng ; Tang, Mingze ; Guo, Yu ; Zhang, Huimao ; Dong, Di ; Chen, Chang ; Ma, Jianhua ; Tian, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-9e9bb824f83bd9aa4bce4b2690245faeaaf376270eb3fbb4bd9c8f8bfa0cef173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CT scans</topic><topic>deep learning</topic><topic>lung cancer</topic><topic>raw data</topic><topic>sinogram</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Bingxi</creatorcontrib><creatorcontrib>Sun, Caixia</creatorcontrib><creatorcontrib>Li, Hailin</creatorcontrib><creatorcontrib>Wang, Yongbo</creatorcontrib><creatorcontrib>She, Yunlang</creatorcontrib><creatorcontrib>Zhao, Mengmeng</creatorcontrib><creatorcontrib>Fang, Mengjie</creatorcontrib><creatorcontrib>Zhu, Yongbei</creatorcontrib><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Liu, Zhenyu</creatorcontrib><creatorcontrib>Wei, Ziqi</creatorcontrib><creatorcontrib>Mu, Wei</creatorcontrib><creatorcontrib>Wang, Shuo</creatorcontrib><creatorcontrib>Tang, Zhenchao</creatorcontrib><creatorcontrib>Wei, Jingwei</creatorcontrib><creatorcontrib>Shao, Lizhi</creatorcontrib><creatorcontrib>Tong, Lixia</creatorcontrib><creatorcontrib>Huang, Feng</creatorcontrib><creatorcontrib>Tang, Mingze</creatorcontrib><creatorcontrib>Guo, Yu</creatorcontrib><creatorcontrib>Zhang, Huimao</creatorcontrib><creatorcontrib>Dong, Di</creatorcontrib><creatorcontrib>Chen, Chang</creatorcontrib><creatorcontrib>Ma, Jianhua</creatorcontrib><creatorcontrib>Tian, Jie</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Bingxi</au><au>Sun, Caixia</au><au>Li, Hailin</au><au>Wang, Yongbo</au><au>She, Yunlang</au><au>Zhao, Mengmeng</au><au>Fang, Mengjie</au><au>Zhu, Yongbei</au><au>Wang, Kun</au><au>Liu, Zhenyu</au><au>Wei, Ziqi</au><au>Mu, Wei</au><au>Wang, Shuo</au><au>Tang, Zhenchao</au><au>Wei, Jingwei</au><au>Shao, Lizhi</au><au>Tong, Lixia</au><au>Huang, Feng</au><au>Tang, Mingze</au><au>Guo, Yu</au><au>Zhang, Huimao</au><au>Dong, Di</au><au>Chen, Chang</au><au>Ma, Jianhua</au><au>Tian, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breaking boundaries in radiology: redefining AI diagnostics via raw data ahead of reconstruction</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2024-04-07</date><risdate>2024</risdate><volume>69</volume><issue>7</issue><spage>75015</spage><pages>75015-</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>In the realm of utilizing artificial intelligence (AI) for medical image analysis, the paradigm of 'signal-image-knowledge' has remained unchanged. However, the process of 'signal to image' inevitably introduces information distortion, ultimately leading to irrecoverable biases in the 'image to knowledge' process. Our goal is to skip reconstruction and build a diagnostic model directly from the raw data (signal). . This study focuses on computed tomography (CT) and its raw data (sinogram) as the research subjects. We simulate the real-world process of 'human-signal-image' using the workflow 'CT-simulated data- reconstructed CT,' and we develop a novel AI predictive model directly targeting raw data (RCTM). This model comprises orientation, spatial, and global analysis modules, embodying the fusion of local to global information extraction from raw data. We selected 1994 patients with retrospective cases of solid lung nodules and modeled different types of data. . We employed predefined radiomic features to assess the diagnostic feature differences caused by reconstruction. The results indicated that approximately 14% of the features had Spearman correlation coefficients below 0.8. These findings suggest that despite the increasing maturity of CT reconstruction algorithms, they still introduce perturbations to diagnostic features. Moreover, our proposed RCTM achieved an area under the curve (AUC) of 0.863 in the diagnosis task, showcasing a comprehensive superiority over models constructed from secondary reconstructed CTs (0.840, 0.822, and 0.825). Additionally, the performance of RCTM closely resembled that of models constructed from original CT scans (0.868, 0.878, and 0.866). . The diagnostic and therapeutic approach directly based on CT raw data can enhance the precision of AI models and the concept of 'signal-to-image' can be extended to other types of imaging. AI diagnostic models tailored to raw data offer the potential to disrupt the traditional paradigm of 'signal-image-knowledge', opening up new avenues for more accurate medical diagnostics.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>38224617</pmid><doi>10.1088/1361-6560/ad1e7c</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0498-0432</orcidid><orcidid>https://orcid.org/0000-0002-9981-3110</orcidid><orcidid>https://orcid.org/0000-0003-2958-1710</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2024-04, Vol.69 (7), p.75015
issn 0031-9155
1361-6560
language eng
recordid cdi_proquest_miscellaneous_2915570929
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects CT scans
deep learning
lung cancer
raw data
sinogram
title Breaking boundaries in radiology: redefining AI diagnostics via raw data ahead of reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A19%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breaking%20boundaries%20in%20radiology:%20redefining%20AI%20diagnostics%20via%20raw%20data%20ahead%20of%20reconstruction&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=He,%20Bingxi&rft.date=2024-04-07&rft.volume=69&rft.issue=7&rft.spage=75015&rft.pages=75015-&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/ad1e7c&rft_dat=%3Cproquest_cross%3E2915570929%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915570929&rft_id=info:pmid/38224617&rfr_iscdi=true