Subphase Exchange Cell for Studying Fluid–Fluid Interfaces with Optical Microscopy

A subphase exchange cell was designed to observe fluid–fluid interfaces with a conventional optical microscope while simultaneously changing the subphase chemistry. Materials including phospholipids, asphaltenes, and nanoparticles at fluid–fluid interfaces exhibit unique morphological changes as a f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2024-01, Vol.40 (4), p.2174-2182
Hauptverfasser: Appleby, Benjamin A., Chacon, Amy, Mishra, Arpit, Liserre, Matteo, Goggin, David M., Samaniuk, Joseph R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2182
container_issue 4
container_start_page 2174
container_title Langmuir
container_volume 40
creator Appleby, Benjamin A.
Chacon, Amy
Mishra, Arpit
Liserre, Matteo
Goggin, David M.
Samaniuk, Joseph R.
description A subphase exchange cell was designed to observe fluid–fluid interfaces with a conventional optical microscope while simultaneously changing the subphase chemistry. Materials including phospholipids, asphaltenes, and nanoparticles at fluid–fluid interfaces exhibit unique morphological changes as a function of the bulk-phase chemistry. These changes can affect their interfacial material properties and, ultimately, the emergent bulk material properties of the films, foams, and emulsions produced from such interfacial systems. In this work, we combine experiments, computational fluid dynamics simulations, and modeling to establish the operating parameters for a subphase exchange cell of this type to reach a desired concentration. We used the experimental setup to investigate changes to a graphene film during a common wet-etching transfer process. Observations reveal that capillary interactions can induce defects and deformations in the graphene film during the wet-etching process, an important finding that must be considered for any wet-etching transfer technique for 2D materials. More generally, conventional optical microscopy was shown to be able to image the dynamics of interfacial systems during a bulk-phase chemistry change. Potential applications for this equipment and technique include observing morphological dynamics of phospholipid film structure with subphase salinity, asphaltene film structure with subphase pH, and particle film synthesis with subphase chemistry.
doi_str_mv 10.1021/acs.langmuir.3c03154
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2915569550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915569550</sourcerecordid><originalsourceid>FETCH-LOGICAL-a297t-c1903bf14495de19828c6257e6ebbfe80107406d910d08b54feb29b9f63ac7493</originalsourceid><addsrcrecordid>eNp9kL9OwzAYxC0EoqXwBgh5ZEnx3yQeUdVCpaIOLbNlO06bKk2CnQi68Q68IU-CS1tGplvu7rvvB8AtRkOMCH5Qxg9LVa22XeGG1CCKOTsDfcwJinhKknPQRwmjUcJi2gNX3m8QQoIycQl6NCUkTkXSB8tFp5u18haOP8w61Fk4smUJ89rBRdtlu6JawUnZFdn359evwmnVWpcrYz18L9o1nDdtYVQJXwrjam_qZncNLnJVentz1AF4nYyXo-doNn-ajh5nkSIiaSODBaI6x4wJnlksUpKamPDExlbr3KYIhwdQnAmMMpRqznKridAij6kyCRN0AO4PvY2r3zrrW7ktvAnzVWXrzksiMOex4BwFKztY9xu9s7lsXLFVbicxknueMvCUJ57yyDPE7o4XOr212V_oBDAY0MGwj2_qzlXh4f87fwAMCYYX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915569550</pqid></control><display><type>article</type><title>Subphase Exchange Cell for Studying Fluid–Fluid Interfaces with Optical Microscopy</title><source>ACS Publications</source><creator>Appleby, Benjamin A. ; Chacon, Amy ; Mishra, Arpit ; Liserre, Matteo ; Goggin, David M. ; Samaniuk, Joseph R.</creator><creatorcontrib>Appleby, Benjamin A. ; Chacon, Amy ; Mishra, Arpit ; Liserre, Matteo ; Goggin, David M. ; Samaniuk, Joseph R.</creatorcontrib><description>A subphase exchange cell was designed to observe fluid–fluid interfaces with a conventional optical microscope while simultaneously changing the subphase chemistry. Materials including phospholipids, asphaltenes, and nanoparticles at fluid–fluid interfaces exhibit unique morphological changes as a function of the bulk-phase chemistry. These changes can affect their interfacial material properties and, ultimately, the emergent bulk material properties of the films, foams, and emulsions produced from such interfacial systems. In this work, we combine experiments, computational fluid dynamics simulations, and modeling to establish the operating parameters for a subphase exchange cell of this type to reach a desired concentration. We used the experimental setup to investigate changes to a graphene film during a common wet-etching transfer process. Observations reveal that capillary interactions can induce defects and deformations in the graphene film during the wet-etching process, an important finding that must be considered for any wet-etching transfer technique for 2D materials. More generally, conventional optical microscopy was shown to be able to image the dynamics of interfacial systems during a bulk-phase chemistry change. Potential applications for this equipment and technique include observing morphological dynamics of phospholipid film structure with subphase salinity, asphaltene film structure with subphase pH, and particle film synthesis with subphase chemistry.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.3c03154</identifier><identifier>PMID: 38226897</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Langmuir, 2024-01, Vol.40 (4), p.2174-2182</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a297t-c1903bf14495de19828c6257e6ebbfe80107406d910d08b54feb29b9f63ac7493</cites><orcidid>0000-0002-2880-2182 ; 0000-0002-6077-2999</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.3c03154$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.3c03154$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38226897$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Appleby, Benjamin A.</creatorcontrib><creatorcontrib>Chacon, Amy</creatorcontrib><creatorcontrib>Mishra, Arpit</creatorcontrib><creatorcontrib>Liserre, Matteo</creatorcontrib><creatorcontrib>Goggin, David M.</creatorcontrib><creatorcontrib>Samaniuk, Joseph R.</creatorcontrib><title>Subphase Exchange Cell for Studying Fluid–Fluid Interfaces with Optical Microscopy</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>A subphase exchange cell was designed to observe fluid–fluid interfaces with a conventional optical microscope while simultaneously changing the subphase chemistry. Materials including phospholipids, asphaltenes, and nanoparticles at fluid–fluid interfaces exhibit unique morphological changes as a function of the bulk-phase chemistry. These changes can affect their interfacial material properties and, ultimately, the emergent bulk material properties of the films, foams, and emulsions produced from such interfacial systems. In this work, we combine experiments, computational fluid dynamics simulations, and modeling to establish the operating parameters for a subphase exchange cell of this type to reach a desired concentration. We used the experimental setup to investigate changes to a graphene film during a common wet-etching transfer process. Observations reveal that capillary interactions can induce defects and deformations in the graphene film during the wet-etching process, an important finding that must be considered for any wet-etching transfer technique for 2D materials. More generally, conventional optical microscopy was shown to be able to image the dynamics of interfacial systems during a bulk-phase chemistry change. Potential applications for this equipment and technique include observing morphological dynamics of phospholipid film structure with subphase salinity, asphaltene film structure with subphase pH, and particle film synthesis with subphase chemistry.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kL9OwzAYxC0EoqXwBgh5ZEnx3yQeUdVCpaIOLbNlO06bKk2CnQi68Q68IU-CS1tGplvu7rvvB8AtRkOMCH5Qxg9LVa22XeGG1CCKOTsDfcwJinhKknPQRwmjUcJi2gNX3m8QQoIycQl6NCUkTkXSB8tFp5u18haOP8w61Fk4smUJ89rBRdtlu6JawUnZFdn359evwmnVWpcrYz18L9o1nDdtYVQJXwrjam_qZncNLnJVentz1AF4nYyXo-doNn-ajh5nkSIiaSODBaI6x4wJnlksUpKamPDExlbr3KYIhwdQnAmMMpRqznKridAij6kyCRN0AO4PvY2r3zrrW7ktvAnzVWXrzksiMOex4BwFKztY9xu9s7lsXLFVbicxknueMvCUJ57yyDPE7o4XOr212V_oBDAY0MGwj2_qzlXh4f87fwAMCYYX</recordid><startdate>20240130</startdate><enddate>20240130</enddate><creator>Appleby, Benjamin A.</creator><creator>Chacon, Amy</creator><creator>Mishra, Arpit</creator><creator>Liserre, Matteo</creator><creator>Goggin, David M.</creator><creator>Samaniuk, Joseph R.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2880-2182</orcidid><orcidid>https://orcid.org/0000-0002-6077-2999</orcidid></search><sort><creationdate>20240130</creationdate><title>Subphase Exchange Cell for Studying Fluid–Fluid Interfaces with Optical Microscopy</title><author>Appleby, Benjamin A. ; Chacon, Amy ; Mishra, Arpit ; Liserre, Matteo ; Goggin, David M. ; Samaniuk, Joseph R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a297t-c1903bf14495de19828c6257e6ebbfe80107406d910d08b54feb29b9f63ac7493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Appleby, Benjamin A.</creatorcontrib><creatorcontrib>Chacon, Amy</creatorcontrib><creatorcontrib>Mishra, Arpit</creatorcontrib><creatorcontrib>Liserre, Matteo</creatorcontrib><creatorcontrib>Goggin, David M.</creatorcontrib><creatorcontrib>Samaniuk, Joseph R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Appleby, Benjamin A.</au><au>Chacon, Amy</au><au>Mishra, Arpit</au><au>Liserre, Matteo</au><au>Goggin, David M.</au><au>Samaniuk, Joseph R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subphase Exchange Cell for Studying Fluid–Fluid Interfaces with Optical Microscopy</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2024-01-30</date><risdate>2024</risdate><volume>40</volume><issue>4</issue><spage>2174</spage><epage>2182</epage><pages>2174-2182</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>A subphase exchange cell was designed to observe fluid–fluid interfaces with a conventional optical microscope while simultaneously changing the subphase chemistry. Materials including phospholipids, asphaltenes, and nanoparticles at fluid–fluid interfaces exhibit unique morphological changes as a function of the bulk-phase chemistry. These changes can affect their interfacial material properties and, ultimately, the emergent bulk material properties of the films, foams, and emulsions produced from such interfacial systems. In this work, we combine experiments, computational fluid dynamics simulations, and modeling to establish the operating parameters for a subphase exchange cell of this type to reach a desired concentration. We used the experimental setup to investigate changes to a graphene film during a common wet-etching transfer process. Observations reveal that capillary interactions can induce defects and deformations in the graphene film during the wet-etching process, an important finding that must be considered for any wet-etching transfer technique for 2D materials. More generally, conventional optical microscopy was shown to be able to image the dynamics of interfacial systems during a bulk-phase chemistry change. Potential applications for this equipment and technique include observing morphological dynamics of phospholipid film structure with subphase salinity, asphaltene film structure with subphase pH, and particle film synthesis with subphase chemistry.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38226897</pmid><doi>10.1021/acs.langmuir.3c03154</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2880-2182</orcidid><orcidid>https://orcid.org/0000-0002-6077-2999</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2024-01, Vol.40 (4), p.2174-2182
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_2915569550
source ACS Publications
title Subphase Exchange Cell for Studying Fluid–Fluid Interfaces with Optical Microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T09%3A12%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subphase%20Exchange%20Cell%20for%20Studying%20Fluid%E2%80%93Fluid%20Interfaces%20with%20Optical%20Microscopy&rft.jtitle=Langmuir&rft.au=Appleby,%20Benjamin%20A.&rft.date=2024-01-30&rft.volume=40&rft.issue=4&rft.spage=2174&rft.epage=2182&rft.pages=2174-2182&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.3c03154&rft_dat=%3Cproquest_cross%3E2915569550%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915569550&rft_id=info:pmid/38226897&rfr_iscdi=true