BPJDet: Extended Object Representation for Generic Body-Part Joint Detection
Detection of human body and its parts has been intensively studied. However, most of CNNs-based detectors are trained independently, making it difficult to associate detected parts with body. In this paper, we focus on the joint detection of human body and its parts. Specifically, we propose a novel...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2024-06, Vol.46 (6), p.4314-4330 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4330 |
---|---|
container_issue | 6 |
container_start_page | 4314 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 46 |
creator | Zhou, Huayi Jiang, Fei Si, Jiaxin Ding, Yue Lu, Hongtao |
description | Detection of human body and its parts has been intensively studied. However, most of CNNs-based detectors are trained independently, making it difficult to associate detected parts with body. In this paper, we focus on the joint detection of human body and its parts. Specifically, we propose a novel extended object representation integrating center-offsets of body parts, and construct an end-to-end generic Body-Part Joint Detector (BPJDet). In this way, body-part associations are neatly embedded in a unified representation containing both semantic and geometric contents. Therefore, we can optimize multi-loss to tackle multi-tasks synergistically. Moreover, this representation is suitable for anchor-based and anchor-free detectors. BPJDet does not suffer from error-prone post matching, and keeps a better trade-off between speed and accuracy. Furthermore, BPJDet can be generalized to detect body-part or body-parts of either human or quadruped animals. To verify the superiority of BPJDet, we conduct experiments on datasets of body-part (CityPersons, CrowdHuman and BodyHands) and body-parts (COCOHumanParts and Animals5C). While keeping high detection accuracy, BPJDet achieves state-of-the-art association performance on all datasets. Besides, we show benefits of advanced body-part association capability by improving performance of two representative downstream applications: accurate crowd head detection and hand contact estimation. |
doi_str_mv | 10.1109/TPAMI.2024.3354962 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2915569104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10400895</ieee_id><sourcerecordid>3052182464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-b460228f985e47e407aa52b45ec80e6646010de6faedf1bef57bb6061c37e7f33</originalsourceid><addsrcrecordid>eNpdkEtLAzEURoMotlb_gIgMuHEz9eY5ibtWa1UqLVLXYR53YEo7U5MU9N87tVXEVRb3nI9wCDmn0KcUzM18Nnh56jNgos-5FEaxA9KlhpuYS24OSReoYrHWTHfIifcLACok8GPS4ZqxRFDZJZPh7Pkew200-ghYF1hE02yBeYhece3QYx3SUDV1VDYuGmONrsqjYVN8xrPUhei5qeoQtX5rtNQpOSrTpcez_dsjbw-j-d1jPJmOn-4GkzjnwEOcCQWM6dJoiSJBAUmaSpYJibkGVKo9UyhQlSkWJc2wlEmWKVA05wkmJec9cr3bXbvmfYM-2FXlc1wu0xqbjbfMUCmVoSBa9Oofumg2rm5_ZzlIRjUTakuxHZW7xnuHpV27apW6T0vBblvb79Z229ruW7fS5X56k62w-FV-4rbAxQ6oEPHPogDQRvIvnDKBQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052182464</pqid></control><display><type>article</type><title>BPJDet: Extended Object Representation for Generic Body-Part Joint Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Huayi ; Jiang, Fei ; Si, Jiaxin ; Ding, Yue ; Lu, Hongtao</creator><creatorcontrib>Zhou, Huayi ; Jiang, Fei ; Si, Jiaxin ; Ding, Yue ; Lu, Hongtao</creatorcontrib><description>Detection of human body and its parts has been intensively studied. However, most of CNNs-based detectors are trained independently, making it difficult to associate detected parts with body. In this paper, we focus on the joint detection of human body and its parts. Specifically, we propose a novel extended object representation integrating center-offsets of body parts, and construct an end-to-end generic Body-Part Joint Detector (BPJDet). In this way, body-part associations are neatly embedded in a unified representation containing both semantic and geometric contents. Therefore, we can optimize multi-loss to tackle multi-tasks synergistically. Moreover, this representation is suitable for anchor-based and anchor-free detectors. BPJDet does not suffer from error-prone post matching, and keeps a better trade-off between speed and accuracy. Furthermore, BPJDet can be generalized to detect body-part or body-parts of either human or quadruped animals. To verify the superiority of BPJDet, we conduct experiments on datasets of body-part (CityPersons, CrowdHuman and BodyHands) and body-parts (COCOHumanParts and Animals5C). While keeping high detection accuracy, BPJDet achieves state-of-the-art association performance on all datasets. Besides, we show benefits of advanced body-part association capability by improving performance of two representative downstream applications: accurate crowd head detection and hand contact estimation.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2024.3354962</identifier><identifier>PMID: 38227415</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Body parts ; Body-part association ; body-part joint detection ; Datasets ; Detectors ; Face recognition ; hand contact estimation ; head detection ; Human body ; Magnetic heads ; object representation ; Pedestrians ; Quadrupedal robots ; Representations ; Task analysis ; Training</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2024-06, Vol.46 (6), p.4314-4330</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-b460228f985e47e407aa52b45ec80e6646010de6faedf1bef57bb6061c37e7f33</cites><orcidid>0000-0002-2220-7286 ; 0000-0002-2911-1244 ; 0009-0001-9495-9903 ; 0000-0001-9677-8682 ; 0000-0003-2300-3039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10400895$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10400895$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38227415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Huayi</creatorcontrib><creatorcontrib>Jiang, Fei</creatorcontrib><creatorcontrib>Si, Jiaxin</creatorcontrib><creatorcontrib>Ding, Yue</creatorcontrib><creatorcontrib>Lu, Hongtao</creatorcontrib><title>BPJDet: Extended Object Representation for Generic Body-Part Joint Detection</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Detection of human body and its parts has been intensively studied. However, most of CNNs-based detectors are trained independently, making it difficult to associate detected parts with body. In this paper, we focus on the joint detection of human body and its parts. Specifically, we propose a novel extended object representation integrating center-offsets of body parts, and construct an end-to-end generic Body-Part Joint Detector (BPJDet). In this way, body-part associations are neatly embedded in a unified representation containing both semantic and geometric contents. Therefore, we can optimize multi-loss to tackle multi-tasks synergistically. Moreover, this representation is suitable for anchor-based and anchor-free detectors. BPJDet does not suffer from error-prone post matching, and keeps a better trade-off between speed and accuracy. Furthermore, BPJDet can be generalized to detect body-part or body-parts of either human or quadruped animals. To verify the superiority of BPJDet, we conduct experiments on datasets of body-part (CityPersons, CrowdHuman and BodyHands) and body-parts (COCOHumanParts and Animals5C). While keeping high detection accuracy, BPJDet achieves state-of-the-art association performance on all datasets. Besides, we show benefits of advanced body-part association capability by improving performance of two representative downstream applications: accurate crowd head detection and hand contact estimation.</description><subject>Body parts</subject><subject>Body-part association</subject><subject>body-part joint detection</subject><subject>Datasets</subject><subject>Detectors</subject><subject>Face recognition</subject><subject>hand contact estimation</subject><subject>head detection</subject><subject>Human body</subject><subject>Magnetic heads</subject><subject>object representation</subject><subject>Pedestrians</subject><subject>Quadrupedal robots</subject><subject>Representations</subject><subject>Task analysis</subject><subject>Training</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLAzEURoMotlb_gIgMuHEz9eY5ibtWa1UqLVLXYR53YEo7U5MU9N87tVXEVRb3nI9wCDmn0KcUzM18Nnh56jNgos-5FEaxA9KlhpuYS24OSReoYrHWTHfIifcLACok8GPS4ZqxRFDZJZPh7Pkew200-ghYF1hE02yBeYhece3QYx3SUDV1VDYuGmONrsqjYVN8xrPUhei5qeoQtX5rtNQpOSrTpcez_dsjbw-j-d1jPJmOn-4GkzjnwEOcCQWM6dJoiSJBAUmaSpYJibkGVKo9UyhQlSkWJc2wlEmWKVA05wkmJec9cr3bXbvmfYM-2FXlc1wu0xqbjbfMUCmVoSBa9Oofumg2rm5_ZzlIRjUTakuxHZW7xnuHpV27apW6T0vBblvb79Z229ruW7fS5X56k62w-FV-4rbAxQ6oEPHPogDQRvIvnDKBQA</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Zhou, Huayi</creator><creator>Jiang, Fei</creator><creator>Si, Jiaxin</creator><creator>Ding, Yue</creator><creator>Lu, Hongtao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2220-7286</orcidid><orcidid>https://orcid.org/0000-0002-2911-1244</orcidid><orcidid>https://orcid.org/0009-0001-9495-9903</orcidid><orcidid>https://orcid.org/0000-0001-9677-8682</orcidid><orcidid>https://orcid.org/0000-0003-2300-3039</orcidid></search><sort><creationdate>20240601</creationdate><title>BPJDet: Extended Object Representation for Generic Body-Part Joint Detection</title><author>Zhou, Huayi ; Jiang, Fei ; Si, Jiaxin ; Ding, Yue ; Lu, Hongtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-b460228f985e47e407aa52b45ec80e6646010de6faedf1bef57bb6061c37e7f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Body parts</topic><topic>Body-part association</topic><topic>body-part joint detection</topic><topic>Datasets</topic><topic>Detectors</topic><topic>Face recognition</topic><topic>hand contact estimation</topic><topic>head detection</topic><topic>Human body</topic><topic>Magnetic heads</topic><topic>object representation</topic><topic>Pedestrians</topic><topic>Quadrupedal robots</topic><topic>Representations</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Huayi</creatorcontrib><creatorcontrib>Jiang, Fei</creatorcontrib><creatorcontrib>Si, Jiaxin</creatorcontrib><creatorcontrib>Ding, Yue</creatorcontrib><creatorcontrib>Lu, Hongtao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Huayi</au><au>Jiang, Fei</au><au>Si, Jiaxin</au><au>Ding, Yue</au><au>Lu, Hongtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BPJDet: Extended Object Representation for Generic Body-Part Joint Detection</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>46</volume><issue>6</issue><spage>4314</spage><epage>4330</epage><pages>4314-4330</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Detection of human body and its parts has been intensively studied. However, most of CNNs-based detectors are trained independently, making it difficult to associate detected parts with body. In this paper, we focus on the joint detection of human body and its parts. Specifically, we propose a novel extended object representation integrating center-offsets of body parts, and construct an end-to-end generic Body-Part Joint Detector (BPJDet). In this way, body-part associations are neatly embedded in a unified representation containing both semantic and geometric contents. Therefore, we can optimize multi-loss to tackle multi-tasks synergistically. Moreover, this representation is suitable for anchor-based and anchor-free detectors. BPJDet does not suffer from error-prone post matching, and keeps a better trade-off between speed and accuracy. Furthermore, BPJDet can be generalized to detect body-part or body-parts of either human or quadruped animals. To verify the superiority of BPJDet, we conduct experiments on datasets of body-part (CityPersons, CrowdHuman and BodyHands) and body-parts (COCOHumanParts and Animals5C). While keeping high detection accuracy, BPJDet achieves state-of-the-art association performance on all datasets. Besides, we show benefits of advanced body-part association capability by improving performance of two representative downstream applications: accurate crowd head detection and hand contact estimation.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38227415</pmid><doi>10.1109/TPAMI.2024.3354962</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2220-7286</orcidid><orcidid>https://orcid.org/0000-0002-2911-1244</orcidid><orcidid>https://orcid.org/0009-0001-9495-9903</orcidid><orcidid>https://orcid.org/0000-0001-9677-8682</orcidid><orcidid>https://orcid.org/0000-0003-2300-3039</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2024-06, Vol.46 (6), p.4314-4330 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_proquest_miscellaneous_2915569104 |
source | IEEE Electronic Library (IEL) |
subjects | Body parts Body-part association body-part joint detection Datasets Detectors Face recognition hand contact estimation head detection Human body Magnetic heads object representation Pedestrians Quadrupedal robots Representations Task analysis Training |
title | BPJDet: Extended Object Representation for Generic Body-Part Joint Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A05%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BPJDet:%20Extended%20Object%20Representation%20for%20Generic%20Body-Part%20Joint%20Detection&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Zhou,%20Huayi&rft.date=2024-06-01&rft.volume=46&rft.issue=6&rft.spage=4314&rft.epage=4330&rft.pages=4314-4330&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2024.3354962&rft_dat=%3Cproquest_RIE%3E3052182464%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3052182464&rft_id=info:pmid/38227415&rft_ieee_id=10400895&rfr_iscdi=true |