BPJDet: Extended Object Representation for Generic Body-Part Joint Detection

Detection of human body and its parts has been intensively studied. However, most of CNNs-based detectors are trained independently, making it difficult to associate detected parts with body. In this paper, we focus on the joint detection of human body and its parts. Specifically, we propose a novel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2024-06, Vol.46 (6), p.4314-4330
Hauptverfasser: Zhou, Huayi, Jiang, Fei, Si, Jiaxin, Ding, Yue, Lu, Hongtao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4330
container_issue 6
container_start_page 4314
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 46
creator Zhou, Huayi
Jiang, Fei
Si, Jiaxin
Ding, Yue
Lu, Hongtao
description Detection of human body and its parts has been intensively studied. However, most of CNNs-based detectors are trained independently, making it difficult to associate detected parts with body. In this paper, we focus on the joint detection of human body and its parts. Specifically, we propose a novel extended object representation integrating center-offsets of body parts, and construct an end-to-end generic Body-Part Joint Detector (BPJDet). In this way, body-part associations are neatly embedded in a unified representation containing both semantic and geometric contents. Therefore, we can optimize multi-loss to tackle multi-tasks synergistically. Moreover, this representation is suitable for anchor-based and anchor-free detectors. BPJDet does not suffer from error-prone post matching, and keeps a better trade-off between speed and accuracy. Furthermore, BPJDet can be generalized to detect body-part or body-parts of either human or quadruped animals. To verify the superiority of BPJDet, we conduct experiments on datasets of body-part (CityPersons, CrowdHuman and BodyHands) and body-parts (COCOHumanParts and Animals5C). While keeping high detection accuracy, BPJDet achieves state-of-the-art association performance on all datasets. Besides, we show benefits of advanced body-part association capability by improving performance of two representative downstream applications: accurate crowd head detection and hand contact estimation.
doi_str_mv 10.1109/TPAMI.2024.3354962
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2915569104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10400895</ieee_id><sourcerecordid>3052182464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-b460228f985e47e407aa52b45ec80e6646010de6faedf1bef57bb6061c37e7f33</originalsourceid><addsrcrecordid>eNpdkEtLAzEURoMotlb_gIgMuHEz9eY5ibtWa1UqLVLXYR53YEo7U5MU9N87tVXEVRb3nI9wCDmn0KcUzM18Nnh56jNgos-5FEaxA9KlhpuYS24OSReoYrHWTHfIifcLACok8GPS4ZqxRFDZJZPh7Pkew200-ghYF1hE02yBeYhece3QYx3SUDV1VDYuGmONrsqjYVN8xrPUhei5qeoQtX5rtNQpOSrTpcez_dsjbw-j-d1jPJmOn-4GkzjnwEOcCQWM6dJoiSJBAUmaSpYJibkGVKo9UyhQlSkWJc2wlEmWKVA05wkmJec9cr3bXbvmfYM-2FXlc1wu0xqbjbfMUCmVoSBa9Oofumg2rm5_ZzlIRjUTakuxHZW7xnuHpV27apW6T0vBblvb79Z229ruW7fS5X56k62w-FV-4rbAxQ6oEPHPogDQRvIvnDKBQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052182464</pqid></control><display><type>article</type><title>BPJDet: Extended Object Representation for Generic Body-Part Joint Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Huayi ; Jiang, Fei ; Si, Jiaxin ; Ding, Yue ; Lu, Hongtao</creator><creatorcontrib>Zhou, Huayi ; Jiang, Fei ; Si, Jiaxin ; Ding, Yue ; Lu, Hongtao</creatorcontrib><description>Detection of human body and its parts has been intensively studied. However, most of CNNs-based detectors are trained independently, making it difficult to associate detected parts with body. In this paper, we focus on the joint detection of human body and its parts. Specifically, we propose a novel extended object representation integrating center-offsets of body parts, and construct an end-to-end generic Body-Part Joint Detector (BPJDet). In this way, body-part associations are neatly embedded in a unified representation containing both semantic and geometric contents. Therefore, we can optimize multi-loss to tackle multi-tasks synergistically. Moreover, this representation is suitable for anchor-based and anchor-free detectors. BPJDet does not suffer from error-prone post matching, and keeps a better trade-off between speed and accuracy. Furthermore, BPJDet can be generalized to detect body-part or body-parts of either human or quadruped animals. To verify the superiority of BPJDet, we conduct experiments on datasets of body-part (CityPersons, CrowdHuman and BodyHands) and body-parts (COCOHumanParts and Animals5C). While keeping high detection accuracy, BPJDet achieves state-of-the-art association performance on all datasets. Besides, we show benefits of advanced body-part association capability by improving performance of two representative downstream applications: accurate crowd head detection and hand contact estimation.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2024.3354962</identifier><identifier>PMID: 38227415</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Body parts ; Body-part association ; body-part joint detection ; Datasets ; Detectors ; Face recognition ; hand contact estimation ; head detection ; Human body ; Magnetic heads ; object representation ; Pedestrians ; Quadrupedal robots ; Representations ; Task analysis ; Training</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2024-06, Vol.46 (6), p.4314-4330</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-b460228f985e47e407aa52b45ec80e6646010de6faedf1bef57bb6061c37e7f33</cites><orcidid>0000-0002-2220-7286 ; 0000-0002-2911-1244 ; 0009-0001-9495-9903 ; 0000-0001-9677-8682 ; 0000-0003-2300-3039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10400895$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10400895$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38227415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Huayi</creatorcontrib><creatorcontrib>Jiang, Fei</creatorcontrib><creatorcontrib>Si, Jiaxin</creatorcontrib><creatorcontrib>Ding, Yue</creatorcontrib><creatorcontrib>Lu, Hongtao</creatorcontrib><title>BPJDet: Extended Object Representation for Generic Body-Part Joint Detection</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Detection of human body and its parts has been intensively studied. However, most of CNNs-based detectors are trained independently, making it difficult to associate detected parts with body. In this paper, we focus on the joint detection of human body and its parts. Specifically, we propose a novel extended object representation integrating center-offsets of body parts, and construct an end-to-end generic Body-Part Joint Detector (BPJDet). In this way, body-part associations are neatly embedded in a unified representation containing both semantic and geometric contents. Therefore, we can optimize multi-loss to tackle multi-tasks synergistically. Moreover, this representation is suitable for anchor-based and anchor-free detectors. BPJDet does not suffer from error-prone post matching, and keeps a better trade-off between speed and accuracy. Furthermore, BPJDet can be generalized to detect body-part or body-parts of either human or quadruped animals. To verify the superiority of BPJDet, we conduct experiments on datasets of body-part (CityPersons, CrowdHuman and BodyHands) and body-parts (COCOHumanParts and Animals5C). While keeping high detection accuracy, BPJDet achieves state-of-the-art association performance on all datasets. Besides, we show benefits of advanced body-part association capability by improving performance of two representative downstream applications: accurate crowd head detection and hand contact estimation.</description><subject>Body parts</subject><subject>Body-part association</subject><subject>body-part joint detection</subject><subject>Datasets</subject><subject>Detectors</subject><subject>Face recognition</subject><subject>hand contact estimation</subject><subject>head detection</subject><subject>Human body</subject><subject>Magnetic heads</subject><subject>object representation</subject><subject>Pedestrians</subject><subject>Quadrupedal robots</subject><subject>Representations</subject><subject>Task analysis</subject><subject>Training</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLAzEURoMotlb_gIgMuHEz9eY5ibtWa1UqLVLXYR53YEo7U5MU9N87tVXEVRb3nI9wCDmn0KcUzM18Nnh56jNgos-5FEaxA9KlhpuYS24OSReoYrHWTHfIifcLACok8GPS4ZqxRFDZJZPh7Pkew200-ghYF1hE02yBeYhece3QYx3SUDV1VDYuGmONrsqjYVN8xrPUhei5qeoQtX5rtNQpOSrTpcez_dsjbw-j-d1jPJmOn-4GkzjnwEOcCQWM6dJoiSJBAUmaSpYJibkGVKo9UyhQlSkWJc2wlEmWKVA05wkmJec9cr3bXbvmfYM-2FXlc1wu0xqbjbfMUCmVoSBa9Oofumg2rm5_ZzlIRjUTakuxHZW7xnuHpV27apW6T0vBblvb79Z229ruW7fS5X56k62w-FV-4rbAxQ6oEPHPogDQRvIvnDKBQA</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Zhou, Huayi</creator><creator>Jiang, Fei</creator><creator>Si, Jiaxin</creator><creator>Ding, Yue</creator><creator>Lu, Hongtao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2220-7286</orcidid><orcidid>https://orcid.org/0000-0002-2911-1244</orcidid><orcidid>https://orcid.org/0009-0001-9495-9903</orcidid><orcidid>https://orcid.org/0000-0001-9677-8682</orcidid><orcidid>https://orcid.org/0000-0003-2300-3039</orcidid></search><sort><creationdate>20240601</creationdate><title>BPJDet: Extended Object Representation for Generic Body-Part Joint Detection</title><author>Zhou, Huayi ; Jiang, Fei ; Si, Jiaxin ; Ding, Yue ; Lu, Hongtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-b460228f985e47e407aa52b45ec80e6646010de6faedf1bef57bb6061c37e7f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Body parts</topic><topic>Body-part association</topic><topic>body-part joint detection</topic><topic>Datasets</topic><topic>Detectors</topic><topic>Face recognition</topic><topic>hand contact estimation</topic><topic>head detection</topic><topic>Human body</topic><topic>Magnetic heads</topic><topic>object representation</topic><topic>Pedestrians</topic><topic>Quadrupedal robots</topic><topic>Representations</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Huayi</creatorcontrib><creatorcontrib>Jiang, Fei</creatorcontrib><creatorcontrib>Si, Jiaxin</creatorcontrib><creatorcontrib>Ding, Yue</creatorcontrib><creatorcontrib>Lu, Hongtao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Huayi</au><au>Jiang, Fei</au><au>Si, Jiaxin</au><au>Ding, Yue</au><au>Lu, Hongtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BPJDet: Extended Object Representation for Generic Body-Part Joint Detection</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>46</volume><issue>6</issue><spage>4314</spage><epage>4330</epage><pages>4314-4330</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Detection of human body and its parts has been intensively studied. However, most of CNNs-based detectors are trained independently, making it difficult to associate detected parts with body. In this paper, we focus on the joint detection of human body and its parts. Specifically, we propose a novel extended object representation integrating center-offsets of body parts, and construct an end-to-end generic Body-Part Joint Detector (BPJDet). In this way, body-part associations are neatly embedded in a unified representation containing both semantic and geometric contents. Therefore, we can optimize multi-loss to tackle multi-tasks synergistically. Moreover, this representation is suitable for anchor-based and anchor-free detectors. BPJDet does not suffer from error-prone post matching, and keeps a better trade-off between speed and accuracy. Furthermore, BPJDet can be generalized to detect body-part or body-parts of either human or quadruped animals. To verify the superiority of BPJDet, we conduct experiments on datasets of body-part (CityPersons, CrowdHuman and BodyHands) and body-parts (COCOHumanParts and Animals5C). While keeping high detection accuracy, BPJDet achieves state-of-the-art association performance on all datasets. Besides, we show benefits of advanced body-part association capability by improving performance of two representative downstream applications: accurate crowd head detection and hand contact estimation.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38227415</pmid><doi>10.1109/TPAMI.2024.3354962</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2220-7286</orcidid><orcidid>https://orcid.org/0000-0002-2911-1244</orcidid><orcidid>https://orcid.org/0009-0001-9495-9903</orcidid><orcidid>https://orcid.org/0000-0001-9677-8682</orcidid><orcidid>https://orcid.org/0000-0003-2300-3039</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2024-06, Vol.46 (6), p.4314-4330
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_proquest_miscellaneous_2915569104
source IEEE Electronic Library (IEL)
subjects Body parts
Body-part association
body-part joint detection
Datasets
Detectors
Face recognition
hand contact estimation
head detection
Human body
Magnetic heads
object representation
Pedestrians
Quadrupedal robots
Representations
Task analysis
Training
title BPJDet: Extended Object Representation for Generic Body-Part Joint Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A05%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BPJDet:%20Extended%20Object%20Representation%20for%20Generic%20Body-Part%20Joint%20Detection&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Zhou,%20Huayi&rft.date=2024-06-01&rft.volume=46&rft.issue=6&rft.spage=4314&rft.epage=4330&rft.pages=4314-4330&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2024.3354962&rft_dat=%3Cproquest_RIE%3E3052182464%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3052182464&rft_id=info:pmid/38227415&rft_ieee_id=10400895&rfr_iscdi=true