BPJDet: Extended Object Representation for Generic Body-Part Joint Detection

Detection of human body and its parts has been intensively studied. However, most of CNNs-based detectors are trained independently, making it difficult to associate detected parts with body. In this paper, we focus on the joint detection of human body and its parts. Specifically, we propose a novel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2024-06, Vol.46 (6), p.4314-4330
Hauptverfasser: Zhou, Huayi, Jiang, Fei, Si, Jiaxin, Ding, Yue, Lu, Hongtao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Detection of human body and its parts has been intensively studied. However, most of CNNs-based detectors are trained independently, making it difficult to associate detected parts with body. In this paper, we focus on the joint detection of human body and its parts. Specifically, we propose a novel extended object representation integrating center-offsets of body parts, and construct an end-to-end generic Body-Part Joint Detector (BPJDet). In this way, body-part associations are neatly embedded in a unified representation containing both semantic and geometric contents. Therefore, we can optimize multi-loss to tackle multi-tasks synergistically. Moreover, this representation is suitable for anchor-based and anchor-free detectors. BPJDet does not suffer from error-prone post matching, and keeps a better trade-off between speed and accuracy. Furthermore, BPJDet can be generalized to detect body-part or body-parts of either human or quadruped animals. To verify the superiority of BPJDet, we conduct experiments on datasets of body-part (CityPersons, CrowdHuman and BodyHands) and body-parts (COCOHumanParts and Animals5C). While keeping high detection accuracy, BPJDet achieves state-of-the-art association performance on all datasets. Besides, we show benefits of advanced body-part association capability by improving performance of two representative downstream applications: accurate crowd head detection and hand contact estimation.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2024.3354962