Interactions of rare earth elements with bacteria and organic ligands

We investigated the interactions of rare earth elements (REEs) Eu(III) and/or Ce(III, IV) with the common soil bacterium Pseudomonas fluorescens and organic ligands, such as malic acid, citric acid, a siderophore (DFO), cellulose, chitin, and chitosan. Malic acid formed complexes with Eu(III), but d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2006-02, Vol.408, p.1334-1338
Hauptverfasser: Ozaki, Takuo, Suzuki, Yoshinori, Nankawa, Takuya, Yoshida, Takahiro, Ohnuki, Toshihiko, Kimura, Takaumi, Francis, Arokiasamy J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1338
container_issue
container_start_page 1334
container_title Journal of alloys and compounds
container_volume 408
creator Ozaki, Takuo
Suzuki, Yoshinori
Nankawa, Takuya
Yoshida, Takahiro
Ohnuki, Toshihiko
Kimura, Takaumi
Francis, Arokiasamy J.
description We investigated the interactions of rare earth elements (REEs) Eu(III) and/or Ce(III, IV) with the common soil bacterium Pseudomonas fluorescens and organic ligands, such as malic acid, citric acid, a siderophore (DFO), cellulose, chitin, and chitosan. Malic acid formed complexes with Eu(III), but degradation of malic acid was observed when the ratio of malic acid to Eu(III) was higher than 100. Citric acid formed a stoichiometric complex with Eu(III) that was not degraded by P. fluorescens. Adsorption of Eu(III) from the DFO complex occurred as a free ion dissociated from DFO and not as the Eu(III)–DFO complex. Cerium(III) was oxidized to Ce(IV) during complexation with DFO to form the Ce(IV)–DFO complex. Time-resolved laser-induced fluorescence spectroscopy (TRLFS) analysis showed that cellulose, chitin, and chitosan, respectively, formed a weak complex, an inner-spherical complex, and an outer-spherical complex with Eu(III). This method also demonstrated that the coordination environment of Eu(III) adsorbed on P. fluorescens possessed similar characteristics to that of chitin, and revealed that adsorption of Eu(III) on P. fluorescens was through a multidentate and predominantly inner-spherical coordination.
doi_str_mv 10.1016/j.jallcom.2005.04.142
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29155509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838805007358</els_id><sourcerecordid>29155509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-400ecff7175665371b38363134e9ba6d13d95d21b88124468a700e0cc94853253</originalsourceid><addsrcrecordid>eNqFkE1LxDAURYMoOI7-BCErd61J89FkJTKMOjDgRtchTV81pW3GpKP4780ws3d1eXDPhXcQuqWkpITK-77s7TC4MJYVIaIkvKS8OkMLqmpWcCn1OVoQXYlCMaUu0VVKPSGEakYXaL2ZZojWzT5MCYcORxsBg43zJ4YBRpjmhH98vppcgugttlOLQ_ywk3d48DnbdI0uOjskuDnlEr0_rd9WL8X29XmzetwWjnEyF5wQcF1X01pIKVhNG6aYZJRx0I2VLWWtFm1FG6VoxblUts4EcU5zJVgl2BLdHXd3MXztIc1m9MnBMNgJwj6ZSlMhBNG5KI5FF0NKETqzi3608ddQYg7STG9O0sxBmiHcZGmZezhykL_49hBNch4mB62P4GbTBv_Pwh9kBnbm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29155509</pqid></control><display><type>article</type><title>Interactions of rare earth elements with bacteria and organic ligands</title><source>Elsevier ScienceDirect Journals</source><creator>Ozaki, Takuo ; Suzuki, Yoshinori ; Nankawa, Takuya ; Yoshida, Takahiro ; Ohnuki, Toshihiko ; Kimura, Takaumi ; Francis, Arokiasamy J.</creator><creatorcontrib>Ozaki, Takuo ; Suzuki, Yoshinori ; Nankawa, Takuya ; Yoshida, Takahiro ; Ohnuki, Toshihiko ; Kimura, Takaumi ; Francis, Arokiasamy J.</creatorcontrib><description>We investigated the interactions of rare earth elements (REEs) Eu(III) and/or Ce(III, IV) with the common soil bacterium Pseudomonas fluorescens and organic ligands, such as malic acid, citric acid, a siderophore (DFO), cellulose, chitin, and chitosan. Malic acid formed complexes with Eu(III), but degradation of malic acid was observed when the ratio of malic acid to Eu(III) was higher than 100. Citric acid formed a stoichiometric complex with Eu(III) that was not degraded by P. fluorescens. Adsorption of Eu(III) from the DFO complex occurred as a free ion dissociated from DFO and not as the Eu(III)–DFO complex. Cerium(III) was oxidized to Ce(IV) during complexation with DFO to form the Ce(IV)–DFO complex. Time-resolved laser-induced fluorescence spectroscopy (TRLFS) analysis showed that cellulose, chitin, and chitosan, respectively, formed a weak complex, an inner-spherical complex, and an outer-spherical complex with Eu(III). This method also demonstrated that the coordination environment of Eu(III) adsorbed on P. fluorescens possessed similar characteristics to that of chitin, and revealed that adsorption of Eu(III) on P. fluorescens was through a multidentate and predominantly inner-spherical coordination.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2005.04.142</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bacteria ; Biodegradation ; Coordination environment ; Organic ligands ; Rare earth elements</subject><ispartof>Journal of alloys and compounds, 2006-02, Vol.408, p.1334-1338</ispartof><rights>2005 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-400ecff7175665371b38363134e9ba6d13d95d21b88124468a700e0cc94853253</citedby><cites>FETCH-LOGICAL-c340t-400ecff7175665371b38363134e9ba6d13d95d21b88124468a700e0cc94853253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838805007358$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Ozaki, Takuo</creatorcontrib><creatorcontrib>Suzuki, Yoshinori</creatorcontrib><creatorcontrib>Nankawa, Takuya</creatorcontrib><creatorcontrib>Yoshida, Takahiro</creatorcontrib><creatorcontrib>Ohnuki, Toshihiko</creatorcontrib><creatorcontrib>Kimura, Takaumi</creatorcontrib><creatorcontrib>Francis, Arokiasamy J.</creatorcontrib><title>Interactions of rare earth elements with bacteria and organic ligands</title><title>Journal of alloys and compounds</title><description>We investigated the interactions of rare earth elements (REEs) Eu(III) and/or Ce(III, IV) with the common soil bacterium Pseudomonas fluorescens and organic ligands, such as malic acid, citric acid, a siderophore (DFO), cellulose, chitin, and chitosan. Malic acid formed complexes with Eu(III), but degradation of malic acid was observed when the ratio of malic acid to Eu(III) was higher than 100. Citric acid formed a stoichiometric complex with Eu(III) that was not degraded by P. fluorescens. Adsorption of Eu(III) from the DFO complex occurred as a free ion dissociated from DFO and not as the Eu(III)–DFO complex. Cerium(III) was oxidized to Ce(IV) during complexation with DFO to form the Ce(IV)–DFO complex. Time-resolved laser-induced fluorescence spectroscopy (TRLFS) analysis showed that cellulose, chitin, and chitosan, respectively, formed a weak complex, an inner-spherical complex, and an outer-spherical complex with Eu(III). This method also demonstrated that the coordination environment of Eu(III) adsorbed on P. fluorescens possessed similar characteristics to that of chitin, and revealed that adsorption of Eu(III) on P. fluorescens was through a multidentate and predominantly inner-spherical coordination.</description><subject>Bacteria</subject><subject>Biodegradation</subject><subject>Coordination environment</subject><subject>Organic ligands</subject><subject>Rare earth elements</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAURYMoOI7-BCErd61J89FkJTKMOjDgRtchTV81pW3GpKP4780ws3d1eXDPhXcQuqWkpITK-77s7TC4MJYVIaIkvKS8OkMLqmpWcCn1OVoQXYlCMaUu0VVKPSGEakYXaL2ZZojWzT5MCYcORxsBg43zJ4YBRpjmhH98vppcgugttlOLQ_ywk3d48DnbdI0uOjskuDnlEr0_rd9WL8X29XmzetwWjnEyF5wQcF1X01pIKVhNG6aYZJRx0I2VLWWtFm1FG6VoxblUts4EcU5zJVgl2BLdHXd3MXztIc1m9MnBMNgJwj6ZSlMhBNG5KI5FF0NKETqzi3608ddQYg7STG9O0sxBmiHcZGmZezhykL_49hBNch4mB62P4GbTBv_Pwh9kBnbm</recordid><startdate>20060209</startdate><enddate>20060209</enddate><creator>Ozaki, Takuo</creator><creator>Suzuki, Yoshinori</creator><creator>Nankawa, Takuya</creator><creator>Yoshida, Takahiro</creator><creator>Ohnuki, Toshihiko</creator><creator>Kimura, Takaumi</creator><creator>Francis, Arokiasamy J.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20060209</creationdate><title>Interactions of rare earth elements with bacteria and organic ligands</title><author>Ozaki, Takuo ; Suzuki, Yoshinori ; Nankawa, Takuya ; Yoshida, Takahiro ; Ohnuki, Toshihiko ; Kimura, Takaumi ; Francis, Arokiasamy J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-400ecff7175665371b38363134e9ba6d13d95d21b88124468a700e0cc94853253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bacteria</topic><topic>Biodegradation</topic><topic>Coordination environment</topic><topic>Organic ligands</topic><topic>Rare earth elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozaki, Takuo</creatorcontrib><creatorcontrib>Suzuki, Yoshinori</creatorcontrib><creatorcontrib>Nankawa, Takuya</creatorcontrib><creatorcontrib>Yoshida, Takahiro</creatorcontrib><creatorcontrib>Ohnuki, Toshihiko</creatorcontrib><creatorcontrib>Kimura, Takaumi</creatorcontrib><creatorcontrib>Francis, Arokiasamy J.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ozaki, Takuo</au><au>Suzuki, Yoshinori</au><au>Nankawa, Takuya</au><au>Yoshida, Takahiro</au><au>Ohnuki, Toshihiko</au><au>Kimura, Takaumi</au><au>Francis, Arokiasamy J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactions of rare earth elements with bacteria and organic ligands</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2006-02-09</date><risdate>2006</risdate><volume>408</volume><spage>1334</spage><epage>1338</epage><pages>1334-1338</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>We investigated the interactions of rare earth elements (REEs) Eu(III) and/or Ce(III, IV) with the common soil bacterium Pseudomonas fluorescens and organic ligands, such as malic acid, citric acid, a siderophore (DFO), cellulose, chitin, and chitosan. Malic acid formed complexes with Eu(III), but degradation of malic acid was observed when the ratio of malic acid to Eu(III) was higher than 100. Citric acid formed a stoichiometric complex with Eu(III) that was not degraded by P. fluorescens. Adsorption of Eu(III) from the DFO complex occurred as a free ion dissociated from DFO and not as the Eu(III)–DFO complex. Cerium(III) was oxidized to Ce(IV) during complexation with DFO to form the Ce(IV)–DFO complex. Time-resolved laser-induced fluorescence spectroscopy (TRLFS) analysis showed that cellulose, chitin, and chitosan, respectively, formed a weak complex, an inner-spherical complex, and an outer-spherical complex with Eu(III). This method also demonstrated that the coordination environment of Eu(III) adsorbed on P. fluorescens possessed similar characteristics to that of chitin, and revealed that adsorption of Eu(III) on P. fluorescens was through a multidentate and predominantly inner-spherical coordination.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2005.04.142</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2006-02, Vol.408, p.1334-1338
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_miscellaneous_29155509
source Elsevier ScienceDirect Journals
subjects Bacteria
Biodegradation
Coordination environment
Organic ligands
Rare earth elements
title Interactions of rare earth elements with bacteria and organic ligands
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A32%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactions%20of%20rare%20earth%20elements%20with%20bacteria%20and%20organic%20ligands&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Ozaki,%20Takuo&rft.date=2006-02-09&rft.volume=408&rft.spage=1334&rft.epage=1338&rft.pages=1334-1338&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2005.04.142&rft_dat=%3Cproquest_cross%3E29155509%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29155509&rft_id=info:pmid/&rft_els_id=S0925838805007358&rfr_iscdi=true