Community structure from spectral properties in complex networks

We analyze the spectral properties of complex networks focusing on their relation to the community structure, and develop an algorithm based on correlations among components of different eigenvectors. The algorithm applies to general weighted networks, and, in a suitably modified version, to the cas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Servedio, V D P, Colaiori, F, Capocci, A, Caldarelli, G
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 286
container_issue
container_start_page 277
container_title
container_volume 776
creator Servedio, V D P
Colaiori, F
Capocci, A
Caldarelli, G
description We analyze the spectral properties of complex networks focusing on their relation to the community structure, and develop an algorithm based on correlations among components of different eigenvectors. The algorithm applies to general weighted networks, and, in a suitably modified version, to the case of directed networks. Our method allows to correctly detect communities in sharply partitioned graphs, however it is useful to the analysis of more complex networks, without a well defined cluster structure, as social and information networks. As an example, we test the algorithm on a large scale data-set from a psychological experiment of free word association, where it proves to be successful both in clustering words, and in uncovering mental association patterns.
doi_str_mv 10.1063/1.1985394
format Conference Proceeding
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_29148329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29148329</sourcerecordid><originalsourceid>FETCH-LOGICAL-p186t-5927830c99d77dc061ed271eb0f7103470cdba7aabd6a816d8da51938b955a6f3</originalsourceid><addsrcrecordid>eNotzstKxDAUgOGACs6MLnyDrNx1PLknO2XwBgNuFNwNaXIK1bapSYr69gq6-ncfPyEXDLYMtLhiW-asEk4ekTUYoSRwzeGYrACcbLgUr6dkXcobAHfG2BW53qVxXKa-ftNS8xLqkpF2OY20zBhq9gOdc5ox1x4L7Sca0jgP-EUnrJ8pv5czctL5oeD5fzfk5e72effQ7J_uH3c3-2ZmVtdGOW6sgOBcNCYG0AwjNwxb6AwDIQ2E2HrjfRu1t0xHG71iTtjWKeV1Jzbk8s_93flYsNTD2JeAw-AnTEs5cMekFdyJH2ruTOk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>29148329</pqid></control><display><type>conference_proceeding</type><title>Community structure from spectral properties in complex networks</title><source>AIP Journals Complete</source><creator>Servedio, V D P ; Colaiori, F ; Capocci, A ; Caldarelli, G</creator><creatorcontrib>Servedio, V D P ; Colaiori, F ; Capocci, A ; Caldarelli, G</creatorcontrib><description>We analyze the spectral properties of complex networks focusing on their relation to the community structure, and develop an algorithm based on correlations among components of different eigenvectors. The algorithm applies to general weighted networks, and, in a suitably modified version, to the case of directed networks. Our method allows to correctly detect communities in sharply partitioned graphs, however it is useful to the analysis of more complex networks, without a well defined cluster structure, as social and information networks. As an example, we test the algorithm on a large scale data-set from a psychological experiment of free word association, where it proves to be successful both in clustering words, and in uncovering mental association patterns.</description><identifier>ISSN: 0094-243X</identifier><identifier>ISBN: 0735402620</identifier><identifier>ISBN: 9780735402621</identifier><identifier>DOI: 10.1063/1.1985394</identifier><language>eng</language><ispartof>Science of Complex Networks From Biology to the Internet and WWW, 2005, Vol.776, p.277-286</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Servedio, V D P</creatorcontrib><creatorcontrib>Colaiori, F</creatorcontrib><creatorcontrib>Capocci, A</creatorcontrib><creatorcontrib>Caldarelli, G</creatorcontrib><title>Community structure from spectral properties in complex networks</title><title>Science of Complex Networks From Biology to the Internet and WWW</title><description>We analyze the spectral properties of complex networks focusing on their relation to the community structure, and develop an algorithm based on correlations among components of different eigenvectors. The algorithm applies to general weighted networks, and, in a suitably modified version, to the case of directed networks. Our method allows to correctly detect communities in sharply partitioned graphs, however it is useful to the analysis of more complex networks, without a well defined cluster structure, as social and information networks. As an example, we test the algorithm on a large scale data-set from a psychological experiment of free word association, where it proves to be successful both in clustering words, and in uncovering mental association patterns.</description><issn>0094-243X</issn><isbn>0735402620</isbn><isbn>9780735402621</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotzstKxDAUgOGACs6MLnyDrNx1PLknO2XwBgNuFNwNaXIK1bapSYr69gq6-ncfPyEXDLYMtLhiW-asEk4ekTUYoSRwzeGYrACcbLgUr6dkXcobAHfG2BW53qVxXKa-ftNS8xLqkpF2OY20zBhq9gOdc5ox1x4L7Sca0jgP-EUnrJ8pv5czctL5oeD5fzfk5e72effQ7J_uH3c3-2ZmVtdGOW6sgOBcNCYG0AwjNwxb6AwDIQ2E2HrjfRu1t0xHG71iTtjWKeV1Jzbk8s_93flYsNTD2JeAw-AnTEs5cMekFdyJH2ruTOk</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Servedio, V D P</creator><creator>Colaiori, F</creator><creator>Capocci, A</creator><creator>Caldarelli, G</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20050101</creationdate><title>Community structure from spectral properties in complex networks</title><author>Servedio, V D P ; Colaiori, F ; Capocci, A ; Caldarelli, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p186t-5927830c99d77dc061ed271eb0f7103470cdba7aabd6a816d8da51938b955a6f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Servedio, V D P</creatorcontrib><creatorcontrib>Colaiori, F</creatorcontrib><creatorcontrib>Capocci, A</creatorcontrib><creatorcontrib>Caldarelli, G</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Servedio, V D P</au><au>Colaiori, F</au><au>Capocci, A</au><au>Caldarelli, G</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Community structure from spectral properties in complex networks</atitle><btitle>Science of Complex Networks From Biology to the Internet and WWW</btitle><date>2005-01-01</date><risdate>2005</risdate><volume>776</volume><spage>277</spage><epage>286</epage><pages>277-286</pages><issn>0094-243X</issn><isbn>0735402620</isbn><isbn>9780735402621</isbn><abstract>We analyze the spectral properties of complex networks focusing on their relation to the community structure, and develop an algorithm based on correlations among components of different eigenvectors. The algorithm applies to general weighted networks, and, in a suitably modified version, to the case of directed networks. Our method allows to correctly detect communities in sharply partitioned graphs, however it is useful to the analysis of more complex networks, without a well defined cluster structure, as social and information networks. As an example, we test the algorithm on a large scale data-set from a psychological experiment of free word association, where it proves to be successful both in clustering words, and in uncovering mental association patterns.</abstract><doi>10.1063/1.1985394</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof Science of Complex Networks From Biology to the Internet and WWW, 2005, Vol.776, p.277-286
issn 0094-243X
language eng
recordid cdi_proquest_miscellaneous_29148329
source AIP Journals Complete
title Community structure from spectral properties in complex networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T12%3A28%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Community%20structure%20from%20spectral%20properties%20in%20complex%20networks&rft.btitle=Science%20of%20Complex%20Networks%20From%20Biology%20to%20the%20Internet%20and%20WWW&rft.au=Servedio,%20V%20D%20P&rft.date=2005-01-01&rft.volume=776&rft.spage=277&rft.epage=286&rft.pages=277-286&rft.issn=0094-243X&rft.isbn=0735402620&rft.isbn_list=9780735402621&rft_id=info:doi/10.1063/1.1985394&rft_dat=%3Cproquest%3E29148329%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29148329&rft_id=info:pmid/&rfr_iscdi=true