A critical analysis of the CFD-DEM simulation of pharmaceutical aerosols deposition in upper intra-thoracic airways: Considerations on air flow
A well-corroborated numerical methodology ensuring reproducibility in the modeling of pharmaceutical aerosols deposition in the respiratory system via CFD-DEM simulations within the RANS framework is currently missing. Often, inadequately clarified assumptions and approximations and the lack of evid...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2024-03, Vol.170, p.107948, Article 107948 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 107948 |
container_title | Computers in biology and medicine |
container_volume | 170 |
creator | Spasov, G.H. Rossi, R. Vanossi, A. Cottini, C. Benassi, A. |
description | A well-corroborated numerical methodology ensuring reproducibility in the modeling of pharmaceutical aerosols deposition in the respiratory system via CFD-DEM simulations within the RANS framework is currently missing. Often, inadequately clarified assumptions and approximations and the lack of evidences on their quantitative impact on the simulated deposition phenomenology, make a direct comparison among the different theoretical studies and the limited number of experiments a very challenging task. Here, with the ultimate goal of providing a critical analysis of some crucial computational aspects of aerosols deposition, we address the issues of velocity fluctuations propagation in the upper intra-thoracic airways and of the persistence of secondary flows using the SimInhale reference benchmark. We complement the investigation by describing how methodologies used to drive the flow through a truncated lung model may affect numerical results and how small discrepancies are observed in velocity profiles when comparing simulations based on different meshing strategies.
[Display omitted]
•The way the airflow is driven in the simulations can cause significant differences in flow splitting and ventilation anisotropy.•To ensure adherence of simulations to experiments the air flow splitting must be measured and imposed in the simulations.•Secondary flow structures (vortices) persist up to the 7th generation growing in intensity rather than attenuating.•Secondary flow structures are extremely sensitive to the kind of mesh employed and to the refinement strategy adopted.•Air turbulence survives up to the 7th generation of the human airways.•Spatial/temporal correlations of air velocity fluctuations deserve more attention and further investigation. |
doi_str_mv | 10.1016/j.compbiomed.2024.107948 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2914256061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482524000325</els_id><sourcerecordid>2914256061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-430cd288c0d1b045bc765a45d78517a0980a07f8f996c2992d7e216d736c43263</originalsourceid><addsrcrecordid>eNqFkcFu3CAURVHVqpkm-YUKqZtuPHlgwNBdOkmaSqm6adeIAaxhZBsX7ETzFf3l4sxElbrpCsQ99z10L0KYwJoAEVf7tY39uA2x925NgbLy3CgmX6EVkY2qgNfsNVoBEKiYpPwMvct5DwAManiLzmpJiRJMrtDva2xTmII1HTaD6Q45ZBxbPO083tzdVDe333AO_dyZKcRhUcadSb2xfj6ZfIo5dhk7P8Ycnqkw4HkcfSqXKZlq2sVkbLDYhPRkDvkT3sQhB-fT89Cyb1gk3Hbx6QK9aU2X_eXpPEc_725_bO6rh-9fvm6uHyrLOJ0qVoN1VEoLjmyB8a1tBDeMu0Zy0hhQEgw0rWyVEpYqRV3jKRGuqYVlNRX1Ofp4nDum-Gv2edJ9yNZ3nRl8nLOmijDKBQhS0A__oPs4p5LVQpU_8IZzVSh5pGzJIyff6jGF3qSDJqCX0vRe_y1NL6XpY2nF-v60YN4u2ovxpaUCfD4CviTyGHzS2QY_WO9C8nbSLob_b_kD0aat5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928857559</pqid></control><display><type>article</type><title>A critical analysis of the CFD-DEM simulation of pharmaceutical aerosols deposition in upper intra-thoracic airways: Considerations on air flow</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Spasov, G.H. ; Rossi, R. ; Vanossi, A. ; Cottini, C. ; Benassi, A.</creator><creatorcontrib>Spasov, G.H. ; Rossi, R. ; Vanossi, A. ; Cottini, C. ; Benassi, A.</creatorcontrib><description>A well-corroborated numerical methodology ensuring reproducibility in the modeling of pharmaceutical aerosols deposition in the respiratory system via CFD-DEM simulations within the RANS framework is currently missing. Often, inadequately clarified assumptions and approximations and the lack of evidences on their quantitative impact on the simulated deposition phenomenology, make a direct comparison among the different theoretical studies and the limited number of experiments a very challenging task. Here, with the ultimate goal of providing a critical analysis of some crucial computational aspects of aerosols deposition, we address the issues of velocity fluctuations propagation in the upper intra-thoracic airways and of the persistence of secondary flows using the SimInhale reference benchmark. We complement the investigation by describing how methodologies used to drive the flow through a truncated lung model may affect numerical results and how small discrepancies are observed in velocity profiles when comparing simulations based on different meshing strategies.
[Display omitted]
•The way the airflow is driven in the simulations can cause significant differences in flow splitting and ventilation anisotropy.•To ensure adherence of simulations to experiments the air flow splitting must be measured and imposed in the simulations.•Secondary flow structures (vortices) persist up to the 7th generation growing in intensity rather than attenuating.•Secondary flow structures are extremely sensitive to the kind of mesh employed and to the refinement strategy adopted.•Air turbulence survives up to the 7th generation of the human airways.•Spatial/temporal correlations of air velocity fluctuations deserve more attention and further investigation.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2024.107948</identifier><identifier>PMID: 38219648</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Administration, Inhalation ; Aerosol deposition ; Aerosols ; Air flow ; Boundary conditions ; CFD-DEM simulation ; Computer Simulation ; Deposition ; Dry powder for inhalation ; Fluid dynamics ; Geometry ; Human lungs ; Human respiratory system ; Hydrodynamics ; Inhalers ; Lung ; Lungs ; Mathematical models ; Models, Biological ; Open source software ; Orally inhaled drug products ; Particle Size ; Pharmaceutical aerosol ; Pharmaceutical industry ; Pharmaceuticals ; Phenomenology ; Product development ; Propagation velocity ; Reproducibility of Results ; Respiratory system ; Secondary flow ; Simulation ; Thorax ; Velocity ; Velocity distribution</subject><ispartof>Computers in biology and medicine, 2024-03, Vol.170, p.107948, Article 107948</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><rights>2024. The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-430cd288c0d1b045bc765a45d78517a0980a07f8f996c2992d7e216d736c43263</citedby><cites>FETCH-LOGICAL-c452t-430cd288c0d1b045bc765a45d78517a0980a07f8f996c2992d7e216d736c43263</cites><orcidid>0000-0002-6058-8403 ; 0000-0001-7548-8643 ; 0000-0002-2597-9644 ; 0000-0003-0329-9135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compbiomed.2024.107948$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38219648$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spasov, G.H.</creatorcontrib><creatorcontrib>Rossi, R.</creatorcontrib><creatorcontrib>Vanossi, A.</creatorcontrib><creatorcontrib>Cottini, C.</creatorcontrib><creatorcontrib>Benassi, A.</creatorcontrib><title>A critical analysis of the CFD-DEM simulation of pharmaceutical aerosols deposition in upper intra-thoracic airways: Considerations on air flow</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>A well-corroborated numerical methodology ensuring reproducibility in the modeling of pharmaceutical aerosols deposition in the respiratory system via CFD-DEM simulations within the RANS framework is currently missing. Often, inadequately clarified assumptions and approximations and the lack of evidences on their quantitative impact on the simulated deposition phenomenology, make a direct comparison among the different theoretical studies and the limited number of experiments a very challenging task. Here, with the ultimate goal of providing a critical analysis of some crucial computational aspects of aerosols deposition, we address the issues of velocity fluctuations propagation in the upper intra-thoracic airways and of the persistence of secondary flows using the SimInhale reference benchmark. We complement the investigation by describing how methodologies used to drive the flow through a truncated lung model may affect numerical results and how small discrepancies are observed in velocity profiles when comparing simulations based on different meshing strategies.
[Display omitted]
•The way the airflow is driven in the simulations can cause significant differences in flow splitting and ventilation anisotropy.•To ensure adherence of simulations to experiments the air flow splitting must be measured and imposed in the simulations.•Secondary flow structures (vortices) persist up to the 7th generation growing in intensity rather than attenuating.•Secondary flow structures are extremely sensitive to the kind of mesh employed and to the refinement strategy adopted.•Air turbulence survives up to the 7th generation of the human airways.•Spatial/temporal correlations of air velocity fluctuations deserve more attention and further investigation.</description><subject>Administration, Inhalation</subject><subject>Aerosol deposition</subject><subject>Aerosols</subject><subject>Air flow</subject><subject>Boundary conditions</subject><subject>CFD-DEM simulation</subject><subject>Computer Simulation</subject><subject>Deposition</subject><subject>Dry powder for inhalation</subject><subject>Fluid dynamics</subject><subject>Geometry</subject><subject>Human lungs</subject><subject>Human respiratory system</subject><subject>Hydrodynamics</subject><subject>Inhalers</subject><subject>Lung</subject><subject>Lungs</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Open source software</subject><subject>Orally inhaled drug products</subject><subject>Particle Size</subject><subject>Pharmaceutical aerosol</subject><subject>Pharmaceutical industry</subject><subject>Pharmaceuticals</subject><subject>Phenomenology</subject><subject>Product development</subject><subject>Propagation velocity</subject><subject>Reproducibility of Results</subject><subject>Respiratory system</subject><subject>Secondary flow</subject><subject>Simulation</subject><subject>Thorax</subject><subject>Velocity</subject><subject>Velocity distribution</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu3CAURVHVqpkm-YUKqZtuPHlgwNBdOkmaSqm6adeIAaxhZBsX7ETzFf3l4sxElbrpCsQ99z10L0KYwJoAEVf7tY39uA2x925NgbLy3CgmX6EVkY2qgNfsNVoBEKiYpPwMvct5DwAManiLzmpJiRJMrtDva2xTmII1HTaD6Q45ZBxbPO083tzdVDe333AO_dyZKcRhUcadSb2xfj6ZfIo5dhk7P8Ycnqkw4HkcfSqXKZlq2sVkbLDYhPRkDvkT3sQhB-fT89Cyb1gk3Hbx6QK9aU2X_eXpPEc_725_bO6rh-9fvm6uHyrLOJ0qVoN1VEoLjmyB8a1tBDeMu0Zy0hhQEgw0rWyVEpYqRV3jKRGuqYVlNRX1Ofp4nDum-Gv2edJ9yNZ3nRl8nLOmijDKBQhS0A__oPs4p5LVQpU_8IZzVSh5pGzJIyff6jGF3qSDJqCX0vRe_y1NL6XpY2nF-v60YN4u2ovxpaUCfD4CviTyGHzS2QY_WO9C8nbSLob_b_kD0aat5Q</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Spasov, G.H.</creator><creator>Rossi, R.</creator><creator>Vanossi, A.</creator><creator>Cottini, C.</creator><creator>Benassi, A.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6058-8403</orcidid><orcidid>https://orcid.org/0000-0001-7548-8643</orcidid><orcidid>https://orcid.org/0000-0002-2597-9644</orcidid><orcidid>https://orcid.org/0000-0003-0329-9135</orcidid></search><sort><creationdate>202403</creationdate><title>A critical analysis of the CFD-DEM simulation of pharmaceutical aerosols deposition in upper intra-thoracic airways: Considerations on air flow</title><author>Spasov, G.H. ; Rossi, R. ; Vanossi, A. ; Cottini, C. ; Benassi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-430cd288c0d1b045bc765a45d78517a0980a07f8f996c2992d7e216d736c43263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Administration, Inhalation</topic><topic>Aerosol deposition</topic><topic>Aerosols</topic><topic>Air flow</topic><topic>Boundary conditions</topic><topic>CFD-DEM simulation</topic><topic>Computer Simulation</topic><topic>Deposition</topic><topic>Dry powder for inhalation</topic><topic>Fluid dynamics</topic><topic>Geometry</topic><topic>Human lungs</topic><topic>Human respiratory system</topic><topic>Hydrodynamics</topic><topic>Inhalers</topic><topic>Lung</topic><topic>Lungs</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Open source software</topic><topic>Orally inhaled drug products</topic><topic>Particle Size</topic><topic>Pharmaceutical aerosol</topic><topic>Pharmaceutical industry</topic><topic>Pharmaceuticals</topic><topic>Phenomenology</topic><topic>Product development</topic><topic>Propagation velocity</topic><topic>Reproducibility of Results</topic><topic>Respiratory system</topic><topic>Secondary flow</topic><topic>Simulation</topic><topic>Thorax</topic><topic>Velocity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spasov, G.H.</creatorcontrib><creatorcontrib>Rossi, R.</creatorcontrib><creatorcontrib>Vanossi, A.</creatorcontrib><creatorcontrib>Cottini, C.</creatorcontrib><creatorcontrib>Benassi, A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spasov, G.H.</au><au>Rossi, R.</au><au>Vanossi, A.</au><au>Cottini, C.</au><au>Benassi, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A critical analysis of the CFD-DEM simulation of pharmaceutical aerosols deposition in upper intra-thoracic airways: Considerations on air flow</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2024-03</date><risdate>2024</risdate><volume>170</volume><spage>107948</spage><pages>107948-</pages><artnum>107948</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>A well-corroborated numerical methodology ensuring reproducibility in the modeling of pharmaceutical aerosols deposition in the respiratory system via CFD-DEM simulations within the RANS framework is currently missing. Often, inadequately clarified assumptions and approximations and the lack of evidences on their quantitative impact on the simulated deposition phenomenology, make a direct comparison among the different theoretical studies and the limited number of experiments a very challenging task. Here, with the ultimate goal of providing a critical analysis of some crucial computational aspects of aerosols deposition, we address the issues of velocity fluctuations propagation in the upper intra-thoracic airways and of the persistence of secondary flows using the SimInhale reference benchmark. We complement the investigation by describing how methodologies used to drive the flow through a truncated lung model may affect numerical results and how small discrepancies are observed in velocity profiles when comparing simulations based on different meshing strategies.
[Display omitted]
•The way the airflow is driven in the simulations can cause significant differences in flow splitting and ventilation anisotropy.•To ensure adherence of simulations to experiments the air flow splitting must be measured and imposed in the simulations.•Secondary flow structures (vortices) persist up to the 7th generation growing in intensity rather than attenuating.•Secondary flow structures are extremely sensitive to the kind of mesh employed and to the refinement strategy adopted.•Air turbulence survives up to the 7th generation of the human airways.•Spatial/temporal correlations of air velocity fluctuations deserve more attention and further investigation.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>38219648</pmid><doi>10.1016/j.compbiomed.2024.107948</doi><orcidid>https://orcid.org/0000-0002-6058-8403</orcidid><orcidid>https://orcid.org/0000-0001-7548-8643</orcidid><orcidid>https://orcid.org/0000-0002-2597-9644</orcidid><orcidid>https://orcid.org/0000-0003-0329-9135</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2024-03, Vol.170, p.107948, Article 107948 |
issn | 0010-4825 1879-0534 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_2914256061 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Administration, Inhalation Aerosol deposition Aerosols Air flow Boundary conditions CFD-DEM simulation Computer Simulation Deposition Dry powder for inhalation Fluid dynamics Geometry Human lungs Human respiratory system Hydrodynamics Inhalers Lung Lungs Mathematical models Models, Biological Open source software Orally inhaled drug products Particle Size Pharmaceutical aerosol Pharmaceutical industry Pharmaceuticals Phenomenology Product development Propagation velocity Reproducibility of Results Respiratory system Secondary flow Simulation Thorax Velocity Velocity distribution |
title | A critical analysis of the CFD-DEM simulation of pharmaceutical aerosols deposition in upper intra-thoracic airways: Considerations on air flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T02%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20critical%20analysis%20of%20the%20CFD-DEM%20simulation%20of%20pharmaceutical%20aerosols%20deposition%20in%20upper%20intra-thoracic%20airways:%20Considerations%20on%20air%20flow&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Spasov,%20G.H.&rft.date=2024-03&rft.volume=170&rft.spage=107948&rft.pages=107948-&rft.artnum=107948&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2024.107948&rft_dat=%3Cproquest_cross%3E2914256061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928857559&rft_id=info:pmid/38219648&rft_els_id=S0010482524000325&rfr_iscdi=true |