A critical analysis of the CFD-DEM simulation of pharmaceutical aerosols deposition in upper intra-thoracic airways: Considerations on air flow

A well-corroborated numerical methodology ensuring reproducibility in the modeling of pharmaceutical aerosols deposition in the respiratory system via CFD-DEM simulations within the RANS framework is currently missing. Often, inadequately clarified assumptions and approximations and the lack of evid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2024-03, Vol.170, p.107948, Article 107948
Hauptverfasser: Spasov, G.H., Rossi, R., Vanossi, A., Cottini, C., Benassi, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107948
container_title Computers in biology and medicine
container_volume 170
creator Spasov, G.H.
Rossi, R.
Vanossi, A.
Cottini, C.
Benassi, A.
description A well-corroborated numerical methodology ensuring reproducibility in the modeling of pharmaceutical aerosols deposition in the respiratory system via CFD-DEM simulations within the RANS framework is currently missing. Often, inadequately clarified assumptions and approximations and the lack of evidences on their quantitative impact on the simulated deposition phenomenology, make a direct comparison among the different theoretical studies and the limited number of experiments a very challenging task. Here, with the ultimate goal of providing a critical analysis of some crucial computational aspects of aerosols deposition, we address the issues of velocity fluctuations propagation in the upper intra-thoracic airways and of the persistence of secondary flows using the SimInhale reference benchmark. We complement the investigation by describing how methodologies used to drive the flow through a truncated lung model may affect numerical results and how small discrepancies are observed in velocity profiles when comparing simulations based on different meshing strategies. [Display omitted] •The way the airflow is driven in the simulations can cause significant differences in flow splitting and ventilation anisotropy.•To ensure adherence of simulations to experiments the air flow splitting must be measured and imposed in the simulations.•Secondary flow structures (vortices) persist up to the 7th generation growing in intensity rather than attenuating.•Secondary flow structures are extremely sensitive to the kind of mesh employed and to the refinement strategy adopted.•Air turbulence survives up to the 7th generation of the human airways.•Spatial/temporal correlations of air velocity fluctuations deserve more attention and further investigation.
doi_str_mv 10.1016/j.compbiomed.2024.107948
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2914256061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482524000325</els_id><sourcerecordid>2914256061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-430cd288c0d1b045bc765a45d78517a0980a07f8f996c2992d7e216d736c43263</originalsourceid><addsrcrecordid>eNqFkcFu3CAURVHVqpkm-YUKqZtuPHlgwNBdOkmaSqm6adeIAaxhZBsX7ETzFf3l4sxElbrpCsQ99z10L0KYwJoAEVf7tY39uA2x925NgbLy3CgmX6EVkY2qgNfsNVoBEKiYpPwMvct5DwAManiLzmpJiRJMrtDva2xTmII1HTaD6Q45ZBxbPO083tzdVDe333AO_dyZKcRhUcadSb2xfj6ZfIo5dhk7P8Ycnqkw4HkcfSqXKZlq2sVkbLDYhPRkDvkT3sQhB-fT89Cyb1gk3Hbx6QK9aU2X_eXpPEc_725_bO6rh-9fvm6uHyrLOJ0qVoN1VEoLjmyB8a1tBDeMu0Zy0hhQEgw0rWyVEpYqRV3jKRGuqYVlNRX1Ofp4nDum-Gv2edJ9yNZ3nRl8nLOmijDKBQhS0A__oPs4p5LVQpU_8IZzVSh5pGzJIyff6jGF3qSDJqCX0vRe_y1NL6XpY2nF-v60YN4u2ovxpaUCfD4CviTyGHzS2QY_WO9C8nbSLob_b_kD0aat5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928857559</pqid></control><display><type>article</type><title>A critical analysis of the CFD-DEM simulation of pharmaceutical aerosols deposition in upper intra-thoracic airways: Considerations on air flow</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Spasov, G.H. ; Rossi, R. ; Vanossi, A. ; Cottini, C. ; Benassi, A.</creator><creatorcontrib>Spasov, G.H. ; Rossi, R. ; Vanossi, A. ; Cottini, C. ; Benassi, A.</creatorcontrib><description>A well-corroborated numerical methodology ensuring reproducibility in the modeling of pharmaceutical aerosols deposition in the respiratory system via CFD-DEM simulations within the RANS framework is currently missing. Often, inadequately clarified assumptions and approximations and the lack of evidences on their quantitative impact on the simulated deposition phenomenology, make a direct comparison among the different theoretical studies and the limited number of experiments a very challenging task. Here, with the ultimate goal of providing a critical analysis of some crucial computational aspects of aerosols deposition, we address the issues of velocity fluctuations propagation in the upper intra-thoracic airways and of the persistence of secondary flows using the SimInhale reference benchmark. We complement the investigation by describing how methodologies used to drive the flow through a truncated lung model may affect numerical results and how small discrepancies are observed in velocity profiles when comparing simulations based on different meshing strategies. [Display omitted] •The way the airflow is driven in the simulations can cause significant differences in flow splitting and ventilation anisotropy.•To ensure adherence of simulations to experiments the air flow splitting must be measured and imposed in the simulations.•Secondary flow structures (vortices) persist up to the 7th generation growing in intensity rather than attenuating.•Secondary flow structures are extremely sensitive to the kind of mesh employed and to the refinement strategy adopted.•Air turbulence survives up to the 7th generation of the human airways.•Spatial/temporal correlations of air velocity fluctuations deserve more attention and further investigation.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2024.107948</identifier><identifier>PMID: 38219648</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Administration, Inhalation ; Aerosol deposition ; Aerosols ; Air flow ; Boundary conditions ; CFD-DEM simulation ; Computer Simulation ; Deposition ; Dry powder for inhalation ; Fluid dynamics ; Geometry ; Human lungs ; Human respiratory system ; Hydrodynamics ; Inhalers ; Lung ; Lungs ; Mathematical models ; Models, Biological ; Open source software ; Orally inhaled drug products ; Particle Size ; Pharmaceutical aerosol ; Pharmaceutical industry ; Pharmaceuticals ; Phenomenology ; Product development ; Propagation velocity ; Reproducibility of Results ; Respiratory system ; Secondary flow ; Simulation ; Thorax ; Velocity ; Velocity distribution</subject><ispartof>Computers in biology and medicine, 2024-03, Vol.170, p.107948, Article 107948</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><rights>2024. The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-430cd288c0d1b045bc765a45d78517a0980a07f8f996c2992d7e216d736c43263</citedby><cites>FETCH-LOGICAL-c452t-430cd288c0d1b045bc765a45d78517a0980a07f8f996c2992d7e216d736c43263</cites><orcidid>0000-0002-6058-8403 ; 0000-0001-7548-8643 ; 0000-0002-2597-9644 ; 0000-0003-0329-9135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compbiomed.2024.107948$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38219648$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spasov, G.H.</creatorcontrib><creatorcontrib>Rossi, R.</creatorcontrib><creatorcontrib>Vanossi, A.</creatorcontrib><creatorcontrib>Cottini, C.</creatorcontrib><creatorcontrib>Benassi, A.</creatorcontrib><title>A critical analysis of the CFD-DEM simulation of pharmaceutical aerosols deposition in upper intra-thoracic airways: Considerations on air flow</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>A well-corroborated numerical methodology ensuring reproducibility in the modeling of pharmaceutical aerosols deposition in the respiratory system via CFD-DEM simulations within the RANS framework is currently missing. Often, inadequately clarified assumptions and approximations and the lack of evidences on their quantitative impact on the simulated deposition phenomenology, make a direct comparison among the different theoretical studies and the limited number of experiments a very challenging task. Here, with the ultimate goal of providing a critical analysis of some crucial computational aspects of aerosols deposition, we address the issues of velocity fluctuations propagation in the upper intra-thoracic airways and of the persistence of secondary flows using the SimInhale reference benchmark. We complement the investigation by describing how methodologies used to drive the flow through a truncated lung model may affect numerical results and how small discrepancies are observed in velocity profiles when comparing simulations based on different meshing strategies. [Display omitted] •The way the airflow is driven in the simulations can cause significant differences in flow splitting and ventilation anisotropy.•To ensure adherence of simulations to experiments the air flow splitting must be measured and imposed in the simulations.•Secondary flow structures (vortices) persist up to the 7th generation growing in intensity rather than attenuating.•Secondary flow structures are extremely sensitive to the kind of mesh employed and to the refinement strategy adopted.•Air turbulence survives up to the 7th generation of the human airways.•Spatial/temporal correlations of air velocity fluctuations deserve more attention and further investigation.</description><subject>Administration, Inhalation</subject><subject>Aerosol deposition</subject><subject>Aerosols</subject><subject>Air flow</subject><subject>Boundary conditions</subject><subject>CFD-DEM simulation</subject><subject>Computer Simulation</subject><subject>Deposition</subject><subject>Dry powder for inhalation</subject><subject>Fluid dynamics</subject><subject>Geometry</subject><subject>Human lungs</subject><subject>Human respiratory system</subject><subject>Hydrodynamics</subject><subject>Inhalers</subject><subject>Lung</subject><subject>Lungs</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Open source software</subject><subject>Orally inhaled drug products</subject><subject>Particle Size</subject><subject>Pharmaceutical aerosol</subject><subject>Pharmaceutical industry</subject><subject>Pharmaceuticals</subject><subject>Phenomenology</subject><subject>Product development</subject><subject>Propagation velocity</subject><subject>Reproducibility of Results</subject><subject>Respiratory system</subject><subject>Secondary flow</subject><subject>Simulation</subject><subject>Thorax</subject><subject>Velocity</subject><subject>Velocity distribution</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu3CAURVHVqpkm-YUKqZtuPHlgwNBdOkmaSqm6adeIAaxhZBsX7ETzFf3l4sxElbrpCsQ99z10L0KYwJoAEVf7tY39uA2x925NgbLy3CgmX6EVkY2qgNfsNVoBEKiYpPwMvct5DwAManiLzmpJiRJMrtDva2xTmII1HTaD6Q45ZBxbPO083tzdVDe333AO_dyZKcRhUcadSb2xfj6ZfIo5dhk7P8Ycnqkw4HkcfSqXKZlq2sVkbLDYhPRkDvkT3sQhB-fT89Cyb1gk3Hbx6QK9aU2X_eXpPEc_725_bO6rh-9fvm6uHyrLOJ0qVoN1VEoLjmyB8a1tBDeMu0Zy0hhQEgw0rWyVEpYqRV3jKRGuqYVlNRX1Ofp4nDum-Gv2edJ9yNZ3nRl8nLOmijDKBQhS0A__oPs4p5LVQpU_8IZzVSh5pGzJIyff6jGF3qSDJqCX0vRe_y1NL6XpY2nF-v60YN4u2ovxpaUCfD4CviTyGHzS2QY_WO9C8nbSLob_b_kD0aat5Q</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Spasov, G.H.</creator><creator>Rossi, R.</creator><creator>Vanossi, A.</creator><creator>Cottini, C.</creator><creator>Benassi, A.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6058-8403</orcidid><orcidid>https://orcid.org/0000-0001-7548-8643</orcidid><orcidid>https://orcid.org/0000-0002-2597-9644</orcidid><orcidid>https://orcid.org/0000-0003-0329-9135</orcidid></search><sort><creationdate>202403</creationdate><title>A critical analysis of the CFD-DEM simulation of pharmaceutical aerosols deposition in upper intra-thoracic airways: Considerations on air flow</title><author>Spasov, G.H. ; Rossi, R. ; Vanossi, A. ; Cottini, C. ; Benassi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-430cd288c0d1b045bc765a45d78517a0980a07f8f996c2992d7e216d736c43263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Administration, Inhalation</topic><topic>Aerosol deposition</topic><topic>Aerosols</topic><topic>Air flow</topic><topic>Boundary conditions</topic><topic>CFD-DEM simulation</topic><topic>Computer Simulation</topic><topic>Deposition</topic><topic>Dry powder for inhalation</topic><topic>Fluid dynamics</topic><topic>Geometry</topic><topic>Human lungs</topic><topic>Human respiratory system</topic><topic>Hydrodynamics</topic><topic>Inhalers</topic><topic>Lung</topic><topic>Lungs</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Open source software</topic><topic>Orally inhaled drug products</topic><topic>Particle Size</topic><topic>Pharmaceutical aerosol</topic><topic>Pharmaceutical industry</topic><topic>Pharmaceuticals</topic><topic>Phenomenology</topic><topic>Product development</topic><topic>Propagation velocity</topic><topic>Reproducibility of Results</topic><topic>Respiratory system</topic><topic>Secondary flow</topic><topic>Simulation</topic><topic>Thorax</topic><topic>Velocity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spasov, G.H.</creatorcontrib><creatorcontrib>Rossi, R.</creatorcontrib><creatorcontrib>Vanossi, A.</creatorcontrib><creatorcontrib>Cottini, C.</creatorcontrib><creatorcontrib>Benassi, A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spasov, G.H.</au><au>Rossi, R.</au><au>Vanossi, A.</au><au>Cottini, C.</au><au>Benassi, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A critical analysis of the CFD-DEM simulation of pharmaceutical aerosols deposition in upper intra-thoracic airways: Considerations on air flow</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2024-03</date><risdate>2024</risdate><volume>170</volume><spage>107948</spage><pages>107948-</pages><artnum>107948</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>A well-corroborated numerical methodology ensuring reproducibility in the modeling of pharmaceutical aerosols deposition in the respiratory system via CFD-DEM simulations within the RANS framework is currently missing. Often, inadequately clarified assumptions and approximations and the lack of evidences on their quantitative impact on the simulated deposition phenomenology, make a direct comparison among the different theoretical studies and the limited number of experiments a very challenging task. Here, with the ultimate goal of providing a critical analysis of some crucial computational aspects of aerosols deposition, we address the issues of velocity fluctuations propagation in the upper intra-thoracic airways and of the persistence of secondary flows using the SimInhale reference benchmark. We complement the investigation by describing how methodologies used to drive the flow through a truncated lung model may affect numerical results and how small discrepancies are observed in velocity profiles when comparing simulations based on different meshing strategies. [Display omitted] •The way the airflow is driven in the simulations can cause significant differences in flow splitting and ventilation anisotropy.•To ensure adherence of simulations to experiments the air flow splitting must be measured and imposed in the simulations.•Secondary flow structures (vortices) persist up to the 7th generation growing in intensity rather than attenuating.•Secondary flow structures are extremely sensitive to the kind of mesh employed and to the refinement strategy adopted.•Air turbulence survives up to the 7th generation of the human airways.•Spatial/temporal correlations of air velocity fluctuations deserve more attention and further investigation.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>38219648</pmid><doi>10.1016/j.compbiomed.2024.107948</doi><orcidid>https://orcid.org/0000-0002-6058-8403</orcidid><orcidid>https://orcid.org/0000-0001-7548-8643</orcidid><orcidid>https://orcid.org/0000-0002-2597-9644</orcidid><orcidid>https://orcid.org/0000-0003-0329-9135</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2024-03, Vol.170, p.107948, Article 107948
issn 0010-4825
1879-0534
1879-0534
language eng
recordid cdi_proquest_miscellaneous_2914256061
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Administration, Inhalation
Aerosol deposition
Aerosols
Air flow
Boundary conditions
CFD-DEM simulation
Computer Simulation
Deposition
Dry powder for inhalation
Fluid dynamics
Geometry
Human lungs
Human respiratory system
Hydrodynamics
Inhalers
Lung
Lungs
Mathematical models
Models, Biological
Open source software
Orally inhaled drug products
Particle Size
Pharmaceutical aerosol
Pharmaceutical industry
Pharmaceuticals
Phenomenology
Product development
Propagation velocity
Reproducibility of Results
Respiratory system
Secondary flow
Simulation
Thorax
Velocity
Velocity distribution
title A critical analysis of the CFD-DEM simulation of pharmaceutical aerosols deposition in upper intra-thoracic airways: Considerations on air flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T02%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20critical%20analysis%20of%20the%20CFD-DEM%20simulation%20of%20pharmaceutical%20aerosols%20deposition%20in%20upper%20intra-thoracic%20airways:%20Considerations%20on%20air%20flow&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Spasov,%20G.H.&rft.date=2024-03&rft.volume=170&rft.spage=107948&rft.pages=107948-&rft.artnum=107948&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2024.107948&rft_dat=%3Cproquest_cross%3E2914256061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928857559&rft_id=info:pmid/38219648&rft_els_id=S0010482524000325&rfr_iscdi=true