Automatic Mapping of Terminology Items with Transformers
Biomedical ontologies are a key component in many systems for the analysis of textual clinical data. They are employed to organize information about a certain domain relying on a hierarchy of different classes. Each class maps a concept to items in a terminology developed by domain experts. These ma...
Gespeichert in:
Veröffentlicht in: | AMIA ... Annual Symposium proceedings 2023, Vol.2023, p.599-607 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 607 |
---|---|
container_issue | |
container_start_page | 599 |
container_title | AMIA ... Annual Symposium proceedings |
container_volume | 2023 |
creator | Purpura, Alberto Bettencourt-Silva, Joao Mulligan, Natasha Yadete, Tesfaye Njoku, Kingsley Liu, Julia Stappenbeck, Thaddeus |
description | Biomedical ontologies are a key component in many systems for the analysis of textual clinical data. They are employed to organize information about a certain domain relying on a hierarchy of different classes. Each class maps a concept to items in a terminology developed by domain experts. These mappings are then leveraged to organize the information extracted by Natural Language Processing (NLP) models to build knowledge graphs for inferences. The creation of these associations, however, requires extensive manual review. In this paper, we present an automated approach and repeatable framework to learn a mapping between ontology classes and terminology terms derived from vocabularies in the Unified Medical Language System (UMLS) metathesaurus. According to our evaluation, the proposed system achieves a performance close to humans and provides a substantial improvement over existing systems developed by the National Library of Medicine to assist researchers through this process. |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2914255880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2914255880</sourcerecordid><originalsourceid>FETCH-LOGICAL-p126t-d0a90d107ba7c61b0e1cf321bd5a4fe8b28e844e0b7acf24b6c348ca62e450443</originalsourceid><addsrcrecordid>eNo1j81LwzAcQIMgbk7_BcnRSyGfTXocw4_BxEs9lyT9dUaapiYpsv9ewe30Lo8H7wqtqZRNJYiqV-g25y9ChJK6vkErrhljXJE10tulxGCKd_jNzLOfjjgOuIUU_BTHeDzhfYGQ8Y8vn7hNZspDTAFSvkPXgxkz3J-5QR_PT-3utTq8v-x320M1U1aXqiemIT0lyhrlamoJUDdwRm0vjRhAW6ZBCwHEKuMGJmztuNDO1AyEJELwDXr8784pfi-QSxd8djCOZoK45I41VDAptSZ_6sNZXWyAvpuTDyadusst_wWkTE-x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2914255880</pqid></control><display><type>article</type><title>Automatic Mapping of Terminology Items with Transformers</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Purpura, Alberto ; Bettencourt-Silva, Joao ; Mulligan, Natasha ; Yadete, Tesfaye ; Njoku, Kingsley ; Liu, Julia ; Stappenbeck, Thaddeus</creator><creatorcontrib>Purpura, Alberto ; Bettencourt-Silva, Joao ; Mulligan, Natasha ; Yadete, Tesfaye ; Njoku, Kingsley ; Liu, Julia ; Stappenbeck, Thaddeus</creatorcontrib><description>Biomedical ontologies are a key component in many systems for the analysis of textual clinical data. They are employed to organize information about a certain domain relying on a hierarchy of different classes. Each class maps a concept to items in a terminology developed by domain experts. These mappings are then leveraged to organize the information extracted by Natural Language Processing (NLP) models to build knowledge graphs for inferences. The creation of these associations, however, requires extensive manual review. In this paper, we present an automated approach and repeatable framework to learn a mapping between ontology classes and terminology terms derived from vocabularies in the Unified Medical Language System (UMLS) metathesaurus. According to our evaluation, the proposed system achieves a performance close to humans and provides a substantial improvement over existing systems developed by the National Library of Medicine to assist researchers through this process.</description><identifier>EISSN: 1559-4076</identifier><identifier>PMID: 38222370</identifier><language>eng</language><publisher>United States</publisher><subject>Biological Ontologies ; Humans ; National Library of Medicine (U.S.) ; Natural Language Processing ; Unified Medical Language System ; United States</subject><ispartof>AMIA ... Annual Symposium proceedings, 2023, Vol.2023, p.599-607</ispartof><rights>2023 AMIA - All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38222370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Purpura, Alberto</creatorcontrib><creatorcontrib>Bettencourt-Silva, Joao</creatorcontrib><creatorcontrib>Mulligan, Natasha</creatorcontrib><creatorcontrib>Yadete, Tesfaye</creatorcontrib><creatorcontrib>Njoku, Kingsley</creatorcontrib><creatorcontrib>Liu, Julia</creatorcontrib><creatorcontrib>Stappenbeck, Thaddeus</creatorcontrib><title>Automatic Mapping of Terminology Items with Transformers</title><title>AMIA ... Annual Symposium proceedings</title><addtitle>AMIA Annu Symp Proc</addtitle><description>Biomedical ontologies are a key component in many systems for the analysis of textual clinical data. They are employed to organize information about a certain domain relying on a hierarchy of different classes. Each class maps a concept to items in a terminology developed by domain experts. These mappings are then leveraged to organize the information extracted by Natural Language Processing (NLP) models to build knowledge graphs for inferences. The creation of these associations, however, requires extensive manual review. In this paper, we present an automated approach and repeatable framework to learn a mapping between ontology classes and terminology terms derived from vocabularies in the Unified Medical Language System (UMLS) metathesaurus. According to our evaluation, the proposed system achieves a performance close to humans and provides a substantial improvement over existing systems developed by the National Library of Medicine to assist researchers through this process.</description><subject>Biological Ontologies</subject><subject>Humans</subject><subject>National Library of Medicine (U.S.)</subject><subject>Natural Language Processing</subject><subject>Unified Medical Language System</subject><subject>United States</subject><issn>1559-4076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1j81LwzAcQIMgbk7_BcnRSyGfTXocw4_BxEs9lyT9dUaapiYpsv9ewe30Lo8H7wqtqZRNJYiqV-g25y9ChJK6vkErrhljXJE10tulxGCKd_jNzLOfjjgOuIUU_BTHeDzhfYGQ8Y8vn7hNZspDTAFSvkPXgxkz3J-5QR_PT-3utTq8v-x320M1U1aXqiemIT0lyhrlamoJUDdwRm0vjRhAW6ZBCwHEKuMGJmztuNDO1AyEJELwDXr8784pfi-QSxd8djCOZoK45I41VDAptSZ_6sNZXWyAvpuTDyadusst_wWkTE-x</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Purpura, Alberto</creator><creator>Bettencourt-Silva, Joao</creator><creator>Mulligan, Natasha</creator><creator>Yadete, Tesfaye</creator><creator>Njoku, Kingsley</creator><creator>Liu, Julia</creator><creator>Stappenbeck, Thaddeus</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>2023</creationdate><title>Automatic Mapping of Terminology Items with Transformers</title><author>Purpura, Alberto ; Bettencourt-Silva, Joao ; Mulligan, Natasha ; Yadete, Tesfaye ; Njoku, Kingsley ; Liu, Julia ; Stappenbeck, Thaddeus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p126t-d0a90d107ba7c61b0e1cf321bd5a4fe8b28e844e0b7acf24b6c348ca62e450443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biological Ontologies</topic><topic>Humans</topic><topic>National Library of Medicine (U.S.)</topic><topic>Natural Language Processing</topic><topic>Unified Medical Language System</topic><topic>United States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Purpura, Alberto</creatorcontrib><creatorcontrib>Bettencourt-Silva, Joao</creatorcontrib><creatorcontrib>Mulligan, Natasha</creatorcontrib><creatorcontrib>Yadete, Tesfaye</creatorcontrib><creatorcontrib>Njoku, Kingsley</creatorcontrib><creatorcontrib>Liu, Julia</creatorcontrib><creatorcontrib>Stappenbeck, Thaddeus</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>AMIA ... Annual Symposium proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Purpura, Alberto</au><au>Bettencourt-Silva, Joao</au><au>Mulligan, Natasha</au><au>Yadete, Tesfaye</au><au>Njoku, Kingsley</au><au>Liu, Julia</au><au>Stappenbeck, Thaddeus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Mapping of Terminology Items with Transformers</atitle><jtitle>AMIA ... Annual Symposium proceedings</jtitle><addtitle>AMIA Annu Symp Proc</addtitle><date>2023</date><risdate>2023</risdate><volume>2023</volume><spage>599</spage><epage>607</epage><pages>599-607</pages><eissn>1559-4076</eissn><abstract>Biomedical ontologies are a key component in many systems for the analysis of textual clinical data. They are employed to organize information about a certain domain relying on a hierarchy of different classes. Each class maps a concept to items in a terminology developed by domain experts. These mappings are then leveraged to organize the information extracted by Natural Language Processing (NLP) models to build knowledge graphs for inferences. The creation of these associations, however, requires extensive manual review. In this paper, we present an automated approach and repeatable framework to learn a mapping between ontology classes and terminology terms derived from vocabularies in the Unified Medical Language System (UMLS) metathesaurus. According to our evaluation, the proposed system achieves a performance close to humans and provides a substantial improvement over existing systems developed by the National Library of Medicine to assist researchers through this process.</abstract><cop>United States</cop><pmid>38222370</pmid><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1559-4076 |
ispartof | AMIA ... Annual Symposium proceedings, 2023, Vol.2023, p.599-607 |
issn | 1559-4076 |
language | eng |
recordid | cdi_proquest_miscellaneous_2914255880 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Biological Ontologies Humans National Library of Medicine (U.S.) Natural Language Processing Unified Medical Language System United States |
title | Automatic Mapping of Terminology Items with Transformers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Mapping%20of%20Terminology%20Items%20with%20Transformers&rft.jtitle=AMIA%20...%20Annual%20Symposium%20proceedings&rft.au=Purpura,%20Alberto&rft.date=2023&rft.volume=2023&rft.spage=599&rft.epage=607&rft.pages=599-607&rft.eissn=1559-4076&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E2914255880%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2914255880&rft_id=info:pmid/38222370&rfr_iscdi=true |