Automatic Mapping of Terminology Items with Transformers

Biomedical ontologies are a key component in many systems for the analysis of textual clinical data. They are employed to organize information about a certain domain relying on a hierarchy of different classes. Each class maps a concept to items in a terminology developed by domain experts. These ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AMIA ... Annual Symposium proceedings 2023, Vol.2023, p.599-607
Hauptverfasser: Purpura, Alberto, Bettencourt-Silva, Joao, Mulligan, Natasha, Yadete, Tesfaye, Njoku, Kingsley, Liu, Julia, Stappenbeck, Thaddeus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 607
container_issue
container_start_page 599
container_title AMIA ... Annual Symposium proceedings
container_volume 2023
creator Purpura, Alberto
Bettencourt-Silva, Joao
Mulligan, Natasha
Yadete, Tesfaye
Njoku, Kingsley
Liu, Julia
Stappenbeck, Thaddeus
description Biomedical ontologies are a key component in many systems for the analysis of textual clinical data. They are employed to organize information about a certain domain relying on a hierarchy of different classes. Each class maps a concept to items in a terminology developed by domain experts. These mappings are then leveraged to organize the information extracted by Natural Language Processing (NLP) models to build knowledge graphs for inferences. The creation of these associations, however, requires extensive manual review. In this paper, we present an automated approach and repeatable framework to learn a mapping between ontology classes and terminology terms derived from vocabularies in the Unified Medical Language System (UMLS) metathesaurus. According to our evaluation, the proposed system achieves a performance close to humans and provides a substantial improvement over existing systems developed by the National Library of Medicine to assist researchers through this process.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2914255880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2914255880</sourcerecordid><originalsourceid>FETCH-LOGICAL-p126t-d0a90d107ba7c61b0e1cf321bd5a4fe8b28e844e0b7acf24b6c348ca62e450443</originalsourceid><addsrcrecordid>eNo1j81LwzAcQIMgbk7_BcnRSyGfTXocw4_BxEs9lyT9dUaapiYpsv9ewe30Lo8H7wqtqZRNJYiqV-g25y9ChJK6vkErrhljXJE10tulxGCKd_jNzLOfjjgOuIUU_BTHeDzhfYGQ8Y8vn7hNZspDTAFSvkPXgxkz3J-5QR_PT-3utTq8v-x320M1U1aXqiemIT0lyhrlamoJUDdwRm0vjRhAW6ZBCwHEKuMGJmztuNDO1AyEJELwDXr8784pfi-QSxd8djCOZoK45I41VDAptSZ_6sNZXWyAvpuTDyadusst_wWkTE-x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2914255880</pqid></control><display><type>article</type><title>Automatic Mapping of Terminology Items with Transformers</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Purpura, Alberto ; Bettencourt-Silva, Joao ; Mulligan, Natasha ; Yadete, Tesfaye ; Njoku, Kingsley ; Liu, Julia ; Stappenbeck, Thaddeus</creator><creatorcontrib>Purpura, Alberto ; Bettencourt-Silva, Joao ; Mulligan, Natasha ; Yadete, Tesfaye ; Njoku, Kingsley ; Liu, Julia ; Stappenbeck, Thaddeus</creatorcontrib><description>Biomedical ontologies are a key component in many systems for the analysis of textual clinical data. They are employed to organize information about a certain domain relying on a hierarchy of different classes. Each class maps a concept to items in a terminology developed by domain experts. These mappings are then leveraged to organize the information extracted by Natural Language Processing (NLP) models to build knowledge graphs for inferences. The creation of these associations, however, requires extensive manual review. In this paper, we present an automated approach and repeatable framework to learn a mapping between ontology classes and terminology terms derived from vocabularies in the Unified Medical Language System (UMLS) metathesaurus. According to our evaluation, the proposed system achieves a performance close to humans and provides a substantial improvement over existing systems developed by the National Library of Medicine to assist researchers through this process.</description><identifier>EISSN: 1559-4076</identifier><identifier>PMID: 38222370</identifier><language>eng</language><publisher>United States</publisher><subject>Biological Ontologies ; Humans ; National Library of Medicine (U.S.) ; Natural Language Processing ; Unified Medical Language System ; United States</subject><ispartof>AMIA ... Annual Symposium proceedings, 2023, Vol.2023, p.599-607</ispartof><rights>2023 AMIA - All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38222370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Purpura, Alberto</creatorcontrib><creatorcontrib>Bettencourt-Silva, Joao</creatorcontrib><creatorcontrib>Mulligan, Natasha</creatorcontrib><creatorcontrib>Yadete, Tesfaye</creatorcontrib><creatorcontrib>Njoku, Kingsley</creatorcontrib><creatorcontrib>Liu, Julia</creatorcontrib><creatorcontrib>Stappenbeck, Thaddeus</creatorcontrib><title>Automatic Mapping of Terminology Items with Transformers</title><title>AMIA ... Annual Symposium proceedings</title><addtitle>AMIA Annu Symp Proc</addtitle><description>Biomedical ontologies are a key component in many systems for the analysis of textual clinical data. They are employed to organize information about a certain domain relying on a hierarchy of different classes. Each class maps a concept to items in a terminology developed by domain experts. These mappings are then leveraged to organize the information extracted by Natural Language Processing (NLP) models to build knowledge graphs for inferences. The creation of these associations, however, requires extensive manual review. In this paper, we present an automated approach and repeatable framework to learn a mapping between ontology classes and terminology terms derived from vocabularies in the Unified Medical Language System (UMLS) metathesaurus. According to our evaluation, the proposed system achieves a performance close to humans and provides a substantial improvement over existing systems developed by the National Library of Medicine to assist researchers through this process.</description><subject>Biological Ontologies</subject><subject>Humans</subject><subject>National Library of Medicine (U.S.)</subject><subject>Natural Language Processing</subject><subject>Unified Medical Language System</subject><subject>United States</subject><issn>1559-4076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1j81LwzAcQIMgbk7_BcnRSyGfTXocw4_BxEs9lyT9dUaapiYpsv9ewe30Lo8H7wqtqZRNJYiqV-g25y9ChJK6vkErrhljXJE10tulxGCKd_jNzLOfjjgOuIUU_BTHeDzhfYGQ8Y8vn7hNZspDTAFSvkPXgxkz3J-5QR_PT-3utTq8v-x320M1U1aXqiemIT0lyhrlamoJUDdwRm0vjRhAW6ZBCwHEKuMGJmztuNDO1AyEJELwDXr8784pfi-QSxd8djCOZoK45I41VDAptSZ_6sNZXWyAvpuTDyadusst_wWkTE-x</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Purpura, Alberto</creator><creator>Bettencourt-Silva, Joao</creator><creator>Mulligan, Natasha</creator><creator>Yadete, Tesfaye</creator><creator>Njoku, Kingsley</creator><creator>Liu, Julia</creator><creator>Stappenbeck, Thaddeus</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>2023</creationdate><title>Automatic Mapping of Terminology Items with Transformers</title><author>Purpura, Alberto ; Bettencourt-Silva, Joao ; Mulligan, Natasha ; Yadete, Tesfaye ; Njoku, Kingsley ; Liu, Julia ; Stappenbeck, Thaddeus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p126t-d0a90d107ba7c61b0e1cf321bd5a4fe8b28e844e0b7acf24b6c348ca62e450443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biological Ontologies</topic><topic>Humans</topic><topic>National Library of Medicine (U.S.)</topic><topic>Natural Language Processing</topic><topic>Unified Medical Language System</topic><topic>United States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Purpura, Alberto</creatorcontrib><creatorcontrib>Bettencourt-Silva, Joao</creatorcontrib><creatorcontrib>Mulligan, Natasha</creatorcontrib><creatorcontrib>Yadete, Tesfaye</creatorcontrib><creatorcontrib>Njoku, Kingsley</creatorcontrib><creatorcontrib>Liu, Julia</creatorcontrib><creatorcontrib>Stappenbeck, Thaddeus</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>AMIA ... Annual Symposium proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Purpura, Alberto</au><au>Bettencourt-Silva, Joao</au><au>Mulligan, Natasha</au><au>Yadete, Tesfaye</au><au>Njoku, Kingsley</au><au>Liu, Julia</au><au>Stappenbeck, Thaddeus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Mapping of Terminology Items with Transformers</atitle><jtitle>AMIA ... Annual Symposium proceedings</jtitle><addtitle>AMIA Annu Symp Proc</addtitle><date>2023</date><risdate>2023</risdate><volume>2023</volume><spage>599</spage><epage>607</epage><pages>599-607</pages><eissn>1559-4076</eissn><abstract>Biomedical ontologies are a key component in many systems for the analysis of textual clinical data. They are employed to organize information about a certain domain relying on a hierarchy of different classes. Each class maps a concept to items in a terminology developed by domain experts. These mappings are then leveraged to organize the information extracted by Natural Language Processing (NLP) models to build knowledge graphs for inferences. The creation of these associations, however, requires extensive manual review. In this paper, we present an automated approach and repeatable framework to learn a mapping between ontology classes and terminology terms derived from vocabularies in the Unified Medical Language System (UMLS) metathesaurus. According to our evaluation, the proposed system achieves a performance close to humans and provides a substantial improvement over existing systems developed by the National Library of Medicine to assist researchers through this process.</abstract><cop>United States</cop><pmid>38222370</pmid><tpages>9</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1559-4076
ispartof AMIA ... Annual Symposium proceedings, 2023, Vol.2023, p.599-607
issn 1559-4076
language eng
recordid cdi_proquest_miscellaneous_2914255880
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Biological Ontologies
Humans
National Library of Medicine (U.S.)
Natural Language Processing
Unified Medical Language System
United States
title Automatic Mapping of Terminology Items with Transformers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Mapping%20of%20Terminology%20Items%20with%20Transformers&rft.jtitle=AMIA%20...%20Annual%20Symposium%20proceedings&rft.au=Purpura,%20Alberto&rft.date=2023&rft.volume=2023&rft.spage=599&rft.epage=607&rft.pages=599-607&rft.eissn=1559-4076&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E2914255880%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2914255880&rft_id=info:pmid/38222370&rfr_iscdi=true