Ribosome inactivation regulates translation elongation in neurons
Cellular plasticity is crucial for adapting to ever-changing stimuli. As a result, cells consistently reshape their translatome, and, consequently, their proteome. The control of translational activity has been thoroughly examined at the stage of translation initiation. However, the regulation of ri...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2024-02, Vol.300 (2), p.105648-105648, Article 105648 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105648 |
---|---|
container_issue | 2 |
container_start_page | 105648 |
container_title | The Journal of biological chemistry |
container_volume | 300 |
creator | Popper, Bastian Bürkle, Martina Ciccopiedi, Giuliana Marchioretto, Marta Forné, Ignasi Imhof, Axel Straub, Tobias Viero, Gabriella Götz, Magdalena Schieweck, Rico |
description | Cellular plasticity is crucial for adapting to ever-changing stimuli. As a result, cells consistently reshape their translatome, and, consequently, their proteome. The control of translational activity has been thoroughly examined at the stage of translation initiation. However, the regulation of ribosome speed in cells is widely unknown. In this study, we utilized a timed ribosome runoff approach, along with proteomics and transmission electron microscopy, to investigate global translation kinetics in cells. We found that ribosome speeds vary among various cell types, such as astrocytes, induced pluripotent human stem cells, human neural stem cells, and human and rat neurons. Of all cell types studied, mature cortical neurons exhibit the highest rate of translation. This finding is particularly remarkable because mature cortical neurons express the eukaryotic elongation factor 2 (eEF2) at lower levels than other cell types. Neurons solve this conundrum by inactivating a fraction of their ribosomes. As a result, the increase in eEF2 levels leads to a reduction of inactive ribosomes and an enhancement of active ones. Processes that alter the demand for active ribosomes, like neuronal excitation, cause increased inactivation of redundant ribosomes in an eEF2-dependent manner. Our data suggest a novel regulatory mechanism in which neurons dynamically inactivate ribosomes to facilitate translational remodeling. These findings have important implications for developmental brain disorders characterized by, among other things, aberrant translation. |
doi_str_mv | 10.1016/j.jbc.2024.105648 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2914254805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925824000243</els_id><sourcerecordid>2914254805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-cc72b5c29f57f7e78d383db473795e70f496dfddb721eb0e08efc087d958b9f83</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMozjj6A9xIl246JmnTJLgaBl8wIIiCu9Amt0NKm4xJO-C_t0NHl97NfXDOgfshdE3wkmBS3DXLptJLimk-7qzIxQmaEyyyNGPk8xTNMaYklZSJGbqIscFj5ZKco1kmKJGCFHO0erOVj76DxLpS93Zf9ta7JMB2aMseYtKH0sV2ukLr3XYarUscDMG7eInO6rKNcHXsC_Tx-PC-fk43r08v69Um1Zks-lRrTiumqawZrzlwYTKRmSrnGZcMOK5zWZjamIpTAhUGLKDWWHAjmahkLbIFup1yd8F_DRB71dmooW1LB36IikqSU5YLzEYpmaQ6-BgD1GoXbFeGb0WwOpBTjRrJqQM5NZEbPTfH-KHqwPw5flGNgvtJAOOTewtBRW3BaTA2gO6V8faf-B_bHH9D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2914254805</pqid></control><display><type>article</type><title>Ribosome inactivation regulates translation elongation in neurons</title><source>TestCollectionTL3OpenAccess</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Popper, Bastian ; Bürkle, Martina ; Ciccopiedi, Giuliana ; Marchioretto, Marta ; Forné, Ignasi ; Imhof, Axel ; Straub, Tobias ; Viero, Gabriella ; Götz, Magdalena ; Schieweck, Rico</creator><creatorcontrib>Popper, Bastian ; Bürkle, Martina ; Ciccopiedi, Giuliana ; Marchioretto, Marta ; Forné, Ignasi ; Imhof, Axel ; Straub, Tobias ; Viero, Gabriella ; Götz, Magdalena ; Schieweck, Rico</creatorcontrib><description>Cellular plasticity is crucial for adapting to ever-changing stimuli. As a result, cells consistently reshape their translatome, and, consequently, their proteome. The control of translational activity has been thoroughly examined at the stage of translation initiation. However, the regulation of ribosome speed in cells is widely unknown. In this study, we utilized a timed ribosome runoff approach, along with proteomics and transmission electron microscopy, to investigate global translation kinetics in cells. We found that ribosome speeds vary among various cell types, such as astrocytes, induced pluripotent human stem cells, human neural stem cells, and human and rat neurons. Of all cell types studied, mature cortical neurons exhibit the highest rate of translation. This finding is particularly remarkable because mature cortical neurons express the eukaryotic elongation factor 2 (eEF2) at lower levels than other cell types. Neurons solve this conundrum by inactivating a fraction of their ribosomes. As a result, the increase in eEF2 levels leads to a reduction of inactive ribosomes and an enhancement of active ones. Processes that alter the demand for active ribosomes, like neuronal excitation, cause increased inactivation of redundant ribosomes in an eEF2-dependent manner. Our data suggest a novel regulatory mechanism in which neurons dynamically inactivate ribosomes to facilitate translational remodeling. These findings have important implications for developmental brain disorders characterized by, among other things, aberrant translation.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2024.105648</identifier><identifier>PMID: 38219816</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>astrocytes ; neuronal stimulation ; neurons ; polysome profiling ; ribosome speed ; stem cells</subject><ispartof>The Journal of biological chemistry, 2024-02, Vol.300 (2), p.105648-105648, Article 105648</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-cc72b5c29f57f7e78d383db473795e70f496dfddb721eb0e08efc087d958b9f83</citedby><cites>FETCH-LOGICAL-c396t-cc72b5c29f57f7e78d383db473795e70f496dfddb721eb0e08efc087d958b9f83</cites><orcidid>0000-0002-2393-2455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38219816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Popper, Bastian</creatorcontrib><creatorcontrib>Bürkle, Martina</creatorcontrib><creatorcontrib>Ciccopiedi, Giuliana</creatorcontrib><creatorcontrib>Marchioretto, Marta</creatorcontrib><creatorcontrib>Forné, Ignasi</creatorcontrib><creatorcontrib>Imhof, Axel</creatorcontrib><creatorcontrib>Straub, Tobias</creatorcontrib><creatorcontrib>Viero, Gabriella</creatorcontrib><creatorcontrib>Götz, Magdalena</creatorcontrib><creatorcontrib>Schieweck, Rico</creatorcontrib><title>Ribosome inactivation regulates translation elongation in neurons</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Cellular plasticity is crucial for adapting to ever-changing stimuli. As a result, cells consistently reshape their translatome, and, consequently, their proteome. The control of translational activity has been thoroughly examined at the stage of translation initiation. However, the regulation of ribosome speed in cells is widely unknown. In this study, we utilized a timed ribosome runoff approach, along with proteomics and transmission electron microscopy, to investigate global translation kinetics in cells. We found that ribosome speeds vary among various cell types, such as astrocytes, induced pluripotent human stem cells, human neural stem cells, and human and rat neurons. Of all cell types studied, mature cortical neurons exhibit the highest rate of translation. This finding is particularly remarkable because mature cortical neurons express the eukaryotic elongation factor 2 (eEF2) at lower levels than other cell types. Neurons solve this conundrum by inactivating a fraction of their ribosomes. As a result, the increase in eEF2 levels leads to a reduction of inactive ribosomes and an enhancement of active ones. Processes that alter the demand for active ribosomes, like neuronal excitation, cause increased inactivation of redundant ribosomes in an eEF2-dependent manner. Our data suggest a novel regulatory mechanism in which neurons dynamically inactivate ribosomes to facilitate translational remodeling. These findings have important implications for developmental brain disorders characterized by, among other things, aberrant translation.</description><subject>astrocytes</subject><subject>neuronal stimulation</subject><subject>neurons</subject><subject>polysome profiling</subject><subject>ribosome speed</subject><subject>stem cells</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMozjj6A9xIl246JmnTJLgaBl8wIIiCu9Amt0NKm4xJO-C_t0NHl97NfXDOgfshdE3wkmBS3DXLptJLimk-7qzIxQmaEyyyNGPk8xTNMaYklZSJGbqIscFj5ZKco1kmKJGCFHO0erOVj76DxLpS93Zf9ta7JMB2aMseYtKH0sV2ukLr3XYarUscDMG7eInO6rKNcHXsC_Tx-PC-fk43r08v69Um1Zks-lRrTiumqawZrzlwYTKRmSrnGZcMOK5zWZjamIpTAhUGLKDWWHAjmahkLbIFup1yd8F_DRB71dmooW1LB36IikqSU5YLzEYpmaQ6-BgD1GoXbFeGb0WwOpBTjRrJqQM5NZEbPTfH-KHqwPw5flGNgvtJAOOTewtBRW3BaTA2gO6V8faf-B_bHH9D</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Popper, Bastian</creator><creator>Bürkle, Martina</creator><creator>Ciccopiedi, Giuliana</creator><creator>Marchioretto, Marta</creator><creator>Forné, Ignasi</creator><creator>Imhof, Axel</creator><creator>Straub, Tobias</creator><creator>Viero, Gabriella</creator><creator>Götz, Magdalena</creator><creator>Schieweck, Rico</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2393-2455</orcidid></search><sort><creationdate>20240201</creationdate><title>Ribosome inactivation regulates translation elongation in neurons</title><author>Popper, Bastian ; Bürkle, Martina ; Ciccopiedi, Giuliana ; Marchioretto, Marta ; Forné, Ignasi ; Imhof, Axel ; Straub, Tobias ; Viero, Gabriella ; Götz, Magdalena ; Schieweck, Rico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-cc72b5c29f57f7e78d383db473795e70f496dfddb721eb0e08efc087d958b9f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>astrocytes</topic><topic>neuronal stimulation</topic><topic>neurons</topic><topic>polysome profiling</topic><topic>ribosome speed</topic><topic>stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Popper, Bastian</creatorcontrib><creatorcontrib>Bürkle, Martina</creatorcontrib><creatorcontrib>Ciccopiedi, Giuliana</creatorcontrib><creatorcontrib>Marchioretto, Marta</creatorcontrib><creatorcontrib>Forné, Ignasi</creatorcontrib><creatorcontrib>Imhof, Axel</creatorcontrib><creatorcontrib>Straub, Tobias</creatorcontrib><creatorcontrib>Viero, Gabriella</creatorcontrib><creatorcontrib>Götz, Magdalena</creatorcontrib><creatorcontrib>Schieweck, Rico</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Popper, Bastian</au><au>Bürkle, Martina</au><au>Ciccopiedi, Giuliana</au><au>Marchioretto, Marta</au><au>Forné, Ignasi</au><au>Imhof, Axel</au><au>Straub, Tobias</au><au>Viero, Gabriella</au><au>Götz, Magdalena</au><au>Schieweck, Rico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ribosome inactivation regulates translation elongation in neurons</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>300</volume><issue>2</issue><spage>105648</spage><epage>105648</epage><pages>105648-105648</pages><artnum>105648</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Cellular plasticity is crucial for adapting to ever-changing stimuli. As a result, cells consistently reshape their translatome, and, consequently, their proteome. The control of translational activity has been thoroughly examined at the stage of translation initiation. However, the regulation of ribosome speed in cells is widely unknown. In this study, we utilized a timed ribosome runoff approach, along with proteomics and transmission electron microscopy, to investigate global translation kinetics in cells. We found that ribosome speeds vary among various cell types, such as astrocytes, induced pluripotent human stem cells, human neural stem cells, and human and rat neurons. Of all cell types studied, mature cortical neurons exhibit the highest rate of translation. This finding is particularly remarkable because mature cortical neurons express the eukaryotic elongation factor 2 (eEF2) at lower levels than other cell types. Neurons solve this conundrum by inactivating a fraction of their ribosomes. As a result, the increase in eEF2 levels leads to a reduction of inactive ribosomes and an enhancement of active ones. Processes that alter the demand for active ribosomes, like neuronal excitation, cause increased inactivation of redundant ribosomes in an eEF2-dependent manner. Our data suggest a novel regulatory mechanism in which neurons dynamically inactivate ribosomes to facilitate translational remodeling. These findings have important implications for developmental brain disorders characterized by, among other things, aberrant translation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38219816</pmid><doi>10.1016/j.jbc.2024.105648</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2393-2455</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2024-02, Vol.300 (2), p.105648-105648, Article 105648 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_2914254805 |
source | TestCollectionTL3OpenAccess; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | astrocytes neuronal stimulation neurons polysome profiling ribosome speed stem cells |
title | Ribosome inactivation regulates translation elongation in neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A11%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ribosome%20inactivation%20regulates%20translation%20elongation%20in%20neurons&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Popper,%20Bastian&rft.date=2024-02-01&rft.volume=300&rft.issue=2&rft.spage=105648&rft.epage=105648&rft.pages=105648-105648&rft.artnum=105648&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2024.105648&rft_dat=%3Cproquest_cross%3E2914254805%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2914254805&rft_id=info:pmid/38219816&rft_els_id=S0021925824000243&rfr_iscdi=true |