Ribosome inactivation regulates translation elongation in neurons

Cellular plasticity is crucial for adapting to ever-changing stimuli. As a result, cells consistently reshape their translatome, and, consequently, their proteome. The control of translational activity has been thoroughly examined at the stage of translation initiation. However, the regulation of ri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2024-02, Vol.300 (2), p.105648-105648, Article 105648
Hauptverfasser: Popper, Bastian, Bürkle, Martina, Ciccopiedi, Giuliana, Marchioretto, Marta, Forné, Ignasi, Imhof, Axel, Straub, Tobias, Viero, Gabriella, Götz, Magdalena, Schieweck, Rico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105648
container_issue 2
container_start_page 105648
container_title The Journal of biological chemistry
container_volume 300
creator Popper, Bastian
Bürkle, Martina
Ciccopiedi, Giuliana
Marchioretto, Marta
Forné, Ignasi
Imhof, Axel
Straub, Tobias
Viero, Gabriella
Götz, Magdalena
Schieweck, Rico
description Cellular plasticity is crucial for adapting to ever-changing stimuli. As a result, cells consistently reshape their translatome, and, consequently, their proteome. The control of translational activity has been thoroughly examined at the stage of translation initiation. However, the regulation of ribosome speed in cells is widely unknown. In this study, we utilized a timed ribosome runoff approach, along with proteomics and transmission electron microscopy, to investigate global translation kinetics in cells. We found that ribosome speeds vary among various cell types, such as astrocytes, induced pluripotent human stem cells, human neural stem cells, and human and rat neurons. Of all cell types studied, mature cortical neurons exhibit the highest rate of translation. This finding is particularly remarkable because mature cortical neurons express the eukaryotic elongation factor 2 (eEF2) at lower levels than other cell types. Neurons solve this conundrum by inactivating a fraction of their ribosomes. As a result, the increase in eEF2 levels leads to a reduction of inactive ribosomes and an enhancement of active ones. Processes that alter the demand for active ribosomes, like neuronal excitation, cause increased inactivation of redundant ribosomes in an eEF2-dependent manner. Our data suggest a novel regulatory mechanism in which neurons dynamically inactivate ribosomes to facilitate translational remodeling. These findings have important implications for developmental brain disorders characterized by, among other things, aberrant translation.
doi_str_mv 10.1016/j.jbc.2024.105648
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2914254805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925824000243</els_id><sourcerecordid>2914254805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-cc72b5c29f57f7e78d383db473795e70f496dfddb721eb0e08efc087d958b9f83</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMozjj6A9xIl246JmnTJLgaBl8wIIiCu9Amt0NKm4xJO-C_t0NHl97NfXDOgfshdE3wkmBS3DXLptJLimk-7qzIxQmaEyyyNGPk8xTNMaYklZSJGbqIscFj5ZKco1kmKJGCFHO0erOVj76DxLpS93Zf9ta7JMB2aMseYtKH0sV2ukLr3XYarUscDMG7eInO6rKNcHXsC_Tx-PC-fk43r08v69Um1Zks-lRrTiumqawZrzlwYTKRmSrnGZcMOK5zWZjamIpTAhUGLKDWWHAjmahkLbIFup1yd8F_DRB71dmooW1LB36IikqSU5YLzEYpmaQ6-BgD1GoXbFeGb0WwOpBTjRrJqQM5NZEbPTfH-KHqwPw5flGNgvtJAOOTewtBRW3BaTA2gO6V8faf-B_bHH9D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2914254805</pqid></control><display><type>article</type><title>Ribosome inactivation regulates translation elongation in neurons</title><source>TestCollectionTL3OpenAccess</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Popper, Bastian ; Bürkle, Martina ; Ciccopiedi, Giuliana ; Marchioretto, Marta ; Forné, Ignasi ; Imhof, Axel ; Straub, Tobias ; Viero, Gabriella ; Götz, Magdalena ; Schieweck, Rico</creator><creatorcontrib>Popper, Bastian ; Bürkle, Martina ; Ciccopiedi, Giuliana ; Marchioretto, Marta ; Forné, Ignasi ; Imhof, Axel ; Straub, Tobias ; Viero, Gabriella ; Götz, Magdalena ; Schieweck, Rico</creatorcontrib><description>Cellular plasticity is crucial for adapting to ever-changing stimuli. As a result, cells consistently reshape their translatome, and, consequently, their proteome. The control of translational activity has been thoroughly examined at the stage of translation initiation. However, the regulation of ribosome speed in cells is widely unknown. In this study, we utilized a timed ribosome runoff approach, along with proteomics and transmission electron microscopy, to investigate global translation kinetics in cells. We found that ribosome speeds vary among various cell types, such as astrocytes, induced pluripotent human stem cells, human neural stem cells, and human and rat neurons. Of all cell types studied, mature cortical neurons exhibit the highest rate of translation. This finding is particularly remarkable because mature cortical neurons express the eukaryotic elongation factor 2 (eEF2) at lower levels than other cell types. Neurons solve this conundrum by inactivating a fraction of their ribosomes. As a result, the increase in eEF2 levels leads to a reduction of inactive ribosomes and an enhancement of active ones. Processes that alter the demand for active ribosomes, like neuronal excitation, cause increased inactivation of redundant ribosomes in an eEF2-dependent manner. Our data suggest a novel regulatory mechanism in which neurons dynamically inactivate ribosomes to facilitate translational remodeling. These findings have important implications for developmental brain disorders characterized by, among other things, aberrant translation.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2024.105648</identifier><identifier>PMID: 38219816</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>astrocytes ; neuronal stimulation ; neurons ; polysome profiling ; ribosome speed ; stem cells</subject><ispartof>The Journal of biological chemistry, 2024-02, Vol.300 (2), p.105648-105648, Article 105648</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-cc72b5c29f57f7e78d383db473795e70f496dfddb721eb0e08efc087d958b9f83</citedby><cites>FETCH-LOGICAL-c396t-cc72b5c29f57f7e78d383db473795e70f496dfddb721eb0e08efc087d958b9f83</cites><orcidid>0000-0002-2393-2455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38219816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Popper, Bastian</creatorcontrib><creatorcontrib>Bürkle, Martina</creatorcontrib><creatorcontrib>Ciccopiedi, Giuliana</creatorcontrib><creatorcontrib>Marchioretto, Marta</creatorcontrib><creatorcontrib>Forné, Ignasi</creatorcontrib><creatorcontrib>Imhof, Axel</creatorcontrib><creatorcontrib>Straub, Tobias</creatorcontrib><creatorcontrib>Viero, Gabriella</creatorcontrib><creatorcontrib>Götz, Magdalena</creatorcontrib><creatorcontrib>Schieweck, Rico</creatorcontrib><title>Ribosome inactivation regulates translation elongation in neurons</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Cellular plasticity is crucial for adapting to ever-changing stimuli. As a result, cells consistently reshape their translatome, and, consequently, their proteome. The control of translational activity has been thoroughly examined at the stage of translation initiation. However, the regulation of ribosome speed in cells is widely unknown. In this study, we utilized a timed ribosome runoff approach, along with proteomics and transmission electron microscopy, to investigate global translation kinetics in cells. We found that ribosome speeds vary among various cell types, such as astrocytes, induced pluripotent human stem cells, human neural stem cells, and human and rat neurons. Of all cell types studied, mature cortical neurons exhibit the highest rate of translation. This finding is particularly remarkable because mature cortical neurons express the eukaryotic elongation factor 2 (eEF2) at lower levels than other cell types. Neurons solve this conundrum by inactivating a fraction of their ribosomes. As a result, the increase in eEF2 levels leads to a reduction of inactive ribosomes and an enhancement of active ones. Processes that alter the demand for active ribosomes, like neuronal excitation, cause increased inactivation of redundant ribosomes in an eEF2-dependent manner. Our data suggest a novel regulatory mechanism in which neurons dynamically inactivate ribosomes to facilitate translational remodeling. These findings have important implications for developmental brain disorders characterized by, among other things, aberrant translation.</description><subject>astrocytes</subject><subject>neuronal stimulation</subject><subject>neurons</subject><subject>polysome profiling</subject><subject>ribosome speed</subject><subject>stem cells</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMozjj6A9xIl246JmnTJLgaBl8wIIiCu9Amt0NKm4xJO-C_t0NHl97NfXDOgfshdE3wkmBS3DXLptJLimk-7qzIxQmaEyyyNGPk8xTNMaYklZSJGbqIscFj5ZKco1kmKJGCFHO0erOVj76DxLpS93Zf9ta7JMB2aMseYtKH0sV2ukLr3XYarUscDMG7eInO6rKNcHXsC_Tx-PC-fk43r08v69Um1Zks-lRrTiumqawZrzlwYTKRmSrnGZcMOK5zWZjamIpTAhUGLKDWWHAjmahkLbIFup1yd8F_DRB71dmooW1LB36IikqSU5YLzEYpmaQ6-BgD1GoXbFeGb0WwOpBTjRrJqQM5NZEbPTfH-KHqwPw5flGNgvtJAOOTewtBRW3BaTA2gO6V8faf-B_bHH9D</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Popper, Bastian</creator><creator>Bürkle, Martina</creator><creator>Ciccopiedi, Giuliana</creator><creator>Marchioretto, Marta</creator><creator>Forné, Ignasi</creator><creator>Imhof, Axel</creator><creator>Straub, Tobias</creator><creator>Viero, Gabriella</creator><creator>Götz, Magdalena</creator><creator>Schieweck, Rico</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2393-2455</orcidid></search><sort><creationdate>20240201</creationdate><title>Ribosome inactivation regulates translation elongation in neurons</title><author>Popper, Bastian ; Bürkle, Martina ; Ciccopiedi, Giuliana ; Marchioretto, Marta ; Forné, Ignasi ; Imhof, Axel ; Straub, Tobias ; Viero, Gabriella ; Götz, Magdalena ; Schieweck, Rico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-cc72b5c29f57f7e78d383db473795e70f496dfddb721eb0e08efc087d958b9f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>astrocytes</topic><topic>neuronal stimulation</topic><topic>neurons</topic><topic>polysome profiling</topic><topic>ribosome speed</topic><topic>stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Popper, Bastian</creatorcontrib><creatorcontrib>Bürkle, Martina</creatorcontrib><creatorcontrib>Ciccopiedi, Giuliana</creatorcontrib><creatorcontrib>Marchioretto, Marta</creatorcontrib><creatorcontrib>Forné, Ignasi</creatorcontrib><creatorcontrib>Imhof, Axel</creatorcontrib><creatorcontrib>Straub, Tobias</creatorcontrib><creatorcontrib>Viero, Gabriella</creatorcontrib><creatorcontrib>Götz, Magdalena</creatorcontrib><creatorcontrib>Schieweck, Rico</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Popper, Bastian</au><au>Bürkle, Martina</au><au>Ciccopiedi, Giuliana</au><au>Marchioretto, Marta</au><au>Forné, Ignasi</au><au>Imhof, Axel</au><au>Straub, Tobias</au><au>Viero, Gabriella</au><au>Götz, Magdalena</au><au>Schieweck, Rico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ribosome inactivation regulates translation elongation in neurons</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>300</volume><issue>2</issue><spage>105648</spage><epage>105648</epage><pages>105648-105648</pages><artnum>105648</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Cellular plasticity is crucial for adapting to ever-changing stimuli. As a result, cells consistently reshape their translatome, and, consequently, their proteome. The control of translational activity has been thoroughly examined at the stage of translation initiation. However, the regulation of ribosome speed in cells is widely unknown. In this study, we utilized a timed ribosome runoff approach, along with proteomics and transmission electron microscopy, to investigate global translation kinetics in cells. We found that ribosome speeds vary among various cell types, such as astrocytes, induced pluripotent human stem cells, human neural stem cells, and human and rat neurons. Of all cell types studied, mature cortical neurons exhibit the highest rate of translation. This finding is particularly remarkable because mature cortical neurons express the eukaryotic elongation factor 2 (eEF2) at lower levels than other cell types. Neurons solve this conundrum by inactivating a fraction of their ribosomes. As a result, the increase in eEF2 levels leads to a reduction of inactive ribosomes and an enhancement of active ones. Processes that alter the demand for active ribosomes, like neuronal excitation, cause increased inactivation of redundant ribosomes in an eEF2-dependent manner. Our data suggest a novel regulatory mechanism in which neurons dynamically inactivate ribosomes to facilitate translational remodeling. These findings have important implications for developmental brain disorders characterized by, among other things, aberrant translation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38219816</pmid><doi>10.1016/j.jbc.2024.105648</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2393-2455</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2024-02, Vol.300 (2), p.105648-105648, Article 105648
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_2914254805
source TestCollectionTL3OpenAccess; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects astrocytes
neuronal stimulation
neurons
polysome profiling
ribosome speed
stem cells
title Ribosome inactivation regulates translation elongation in neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A11%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ribosome%20inactivation%20regulates%20translation%20elongation%20in%20neurons&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Popper,%20Bastian&rft.date=2024-02-01&rft.volume=300&rft.issue=2&rft.spage=105648&rft.epage=105648&rft.pages=105648-105648&rft.artnum=105648&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2024.105648&rft_dat=%3Cproquest_cross%3E2914254805%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2914254805&rft_id=info:pmid/38219816&rft_els_id=S0021925824000243&rfr_iscdi=true