Hydrogen permeability and erosion behavior of W–Pd bimetallic systems
The erosion behavior of W–Pd bimetallic systems has been investigated for both hydrogen-saturated (H/Pd ∼ 0.65) and unsaturated states during impact of a steady-state nitrogen plasma from a mirror Penning discharge. An essential decrease by factors of about 2–5 in the erosion rate of W was observed...
Gespeichert in:
Veröffentlicht in: | Fusion engineering and design 2006-02, Vol.81 (1), p.375-380 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 380 |
---|---|
container_issue | 1 |
container_start_page | 375 |
container_title | Fusion engineering and design |
container_volume | 81 |
creator | Glazunov, G.P. Andreev, A.A. Baron, D.I. Causey, R.A. Hassanein, A. Kitayevskiy, K.M. Konotopskiy, A.L. Lapshin, V.I. Neklyudov, I.M. Patokin, A.P. Surkov, A.E. Volkov, E.D. |
description | The erosion behavior of W–Pd bimetallic systems has been investigated for both hydrogen-saturated (H/Pd
∼
0.65) and unsaturated states during impact of a steady-state nitrogen plasma from a mirror Penning discharge. An essential decrease by factors of about 2–5 in the erosion rate of W was observed for hydrogen-saturated W–Pd samples in the nitrogen ion energy range from 0.8 to 1.6
keV. Possible reasons for this erosion behavior are discussed. Isotherms and isobars of hydrogen permeability through W–Pd systems were measured in the temperature range of 573–973
K and hydrogen pressure range of 1.33
×
10
2 to 10
5
Pa. It is shown that the limiting stage of permeation process is, most likely, the diffusion in the W film. The activation energy of hydrogen permeability was determined to be ∼12
kJ/mol, this being much lower than the literature data for bulk tungsten at molecular hydrogen-driven permeation. Possible mechanisms are suggested and analyzed to explain the observed decrease in the activation energy of hydrogen penetration through W–Pd systems. |
doi_str_mv | 10.1016/j.fusengdes.2005.08.034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29141965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920379605005272</els_id><sourcerecordid>29141965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-a87e945150925c0c93332e8f8cd6f208e74cd4ee13bd9085f169eaeaf3e608c63</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKvP4Gx0N2MymZkky1K0FQq6UFyGTHJTU-anJtNCd76Db-iTmNKiS-HC3XznnnsOQtcEZwST6m6V2U2AbmkgZDnGZYZ5hmlxgkaEM5oyIqpTNMIixyllojpHFyGsMCYszgjN5jvj-yV0yRp8C6p2jRt2iepMAr4Pru-SGt7V1vU-6W3y9v359WyS2rUwqKZxOgm7MEAbLtGZVU2Aq-Meo9eH-5fpPF08zR6nk0WqKauGVHEGoihJGf8pNdaCUpoDt1ybyuaYAyu0KQAIrY3AvLSkEqBAWQoV5rqiY3R7uLv2_ccGwiBbFzQ0jeqg3wSZC1LExGUE2QHUMUbwYOXau1b5nSRY7ouTK_lbnNwXJzGXsbiovDlaqKBVY73qtAt_clYWlAoRucmBg5h368DLoB10GozzoAdpevev1w_LOInU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29141965</pqid></control><display><type>article</type><title>Hydrogen permeability and erosion behavior of W–Pd bimetallic systems</title><source>Access via ScienceDirect (Elsevier)</source><creator>Glazunov, G.P. ; Andreev, A.A. ; Baron, D.I. ; Causey, R.A. ; Hassanein, A. ; Kitayevskiy, K.M. ; Konotopskiy, A.L. ; Lapshin, V.I. ; Neklyudov, I.M. ; Patokin, A.P. ; Surkov, A.E. ; Volkov, E.D.</creator><creatorcontrib>Glazunov, G.P. ; Andreev, A.A. ; Baron, D.I. ; Causey, R.A. ; Hassanein, A. ; Kitayevskiy, K.M. ; Konotopskiy, A.L. ; Lapshin, V.I. ; Neklyudov, I.M. ; Patokin, A.P. ; Surkov, A.E. ; Volkov, E.D.</creatorcontrib><description>The erosion behavior of W–Pd bimetallic systems has been investigated for both hydrogen-saturated (H/Pd
∼
0.65) and unsaturated states during impact of a steady-state nitrogen plasma from a mirror Penning discharge. An essential decrease by factors of about 2–5 in the erosion rate of W was observed for hydrogen-saturated W–Pd samples in the nitrogen ion energy range from 0.8 to 1.6
keV. Possible reasons for this erosion behavior are discussed. Isotherms and isobars of hydrogen permeability through W–Pd systems were measured in the temperature range of 573–973
K and hydrogen pressure range of 1.33
×
10
2 to 10
5
Pa. It is shown that the limiting stage of permeation process is, most likely, the diffusion in the W film. The activation energy of hydrogen permeability was determined to be ∼12
kJ/mol, this being much lower than the literature data for bulk tungsten at molecular hydrogen-driven permeation. Possible mechanisms are suggested and analyzed to explain the observed decrease in the activation energy of hydrogen penetration through W–Pd systems.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/j.fusengdes.2005.08.034</identifier><identifier>CODEN: FEDEEE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Controled nuclear fusion plants ; Energy ; Energy. Thermal use of fuels ; Erosion ; Exact sciences and technology ; Hydrogen ; Installations for energy generation and conversion: thermal and electrical energy ; Permeation ; Plasma–material interaction ; Tungsten</subject><ispartof>Fusion engineering and design, 2006-02, Vol.81 (1), p.375-380</ispartof><rights>2005 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-a87e945150925c0c93332e8f8cd6f208e74cd4ee13bd9085f169eaeaf3e608c63</citedby><cites>FETCH-LOGICAL-c376t-a87e945150925c0c93332e8f8cd6f208e74cd4ee13bd9085f169eaeaf3e608c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fusengdes.2005.08.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>310,311,315,782,786,791,792,3552,23937,23938,25147,27931,27932,46002</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17543399$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Glazunov, G.P.</creatorcontrib><creatorcontrib>Andreev, A.A.</creatorcontrib><creatorcontrib>Baron, D.I.</creatorcontrib><creatorcontrib>Causey, R.A.</creatorcontrib><creatorcontrib>Hassanein, A.</creatorcontrib><creatorcontrib>Kitayevskiy, K.M.</creatorcontrib><creatorcontrib>Konotopskiy, A.L.</creatorcontrib><creatorcontrib>Lapshin, V.I.</creatorcontrib><creatorcontrib>Neklyudov, I.M.</creatorcontrib><creatorcontrib>Patokin, A.P.</creatorcontrib><creatorcontrib>Surkov, A.E.</creatorcontrib><creatorcontrib>Volkov, E.D.</creatorcontrib><title>Hydrogen permeability and erosion behavior of W–Pd bimetallic systems</title><title>Fusion engineering and design</title><description>The erosion behavior of W–Pd bimetallic systems has been investigated for both hydrogen-saturated (H/Pd
∼
0.65) and unsaturated states during impact of a steady-state nitrogen plasma from a mirror Penning discharge. An essential decrease by factors of about 2–5 in the erosion rate of W was observed for hydrogen-saturated W–Pd samples in the nitrogen ion energy range from 0.8 to 1.6
keV. Possible reasons for this erosion behavior are discussed. Isotherms and isobars of hydrogen permeability through W–Pd systems were measured in the temperature range of 573–973
K and hydrogen pressure range of 1.33
×
10
2 to 10
5
Pa. It is shown that the limiting stage of permeation process is, most likely, the diffusion in the W film. The activation energy of hydrogen permeability was determined to be ∼12
kJ/mol, this being much lower than the literature data for bulk tungsten at molecular hydrogen-driven permeation. Possible mechanisms are suggested and analyzed to explain the observed decrease in the activation energy of hydrogen penetration through W–Pd systems.</description><subject>Applied sciences</subject><subject>Controled nuclear fusion plants</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Erosion</subject><subject>Exact sciences and technology</subject><subject>Hydrogen</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Permeation</subject><subject>Plasma–material interaction</subject><subject>Tungsten</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKvP4Gx0N2MymZkky1K0FQq6UFyGTHJTU-anJtNCd76Db-iTmNKiS-HC3XznnnsOQtcEZwST6m6V2U2AbmkgZDnGZYZ5hmlxgkaEM5oyIqpTNMIixyllojpHFyGsMCYszgjN5jvj-yV0yRp8C6p2jRt2iepMAr4Pru-SGt7V1vU-6W3y9v359WyS2rUwqKZxOgm7MEAbLtGZVU2Aq-Meo9eH-5fpPF08zR6nk0WqKauGVHEGoihJGf8pNdaCUpoDt1ybyuaYAyu0KQAIrY3AvLSkEqBAWQoV5rqiY3R7uLv2_ccGwiBbFzQ0jeqg3wSZC1LExGUE2QHUMUbwYOXau1b5nSRY7ouTK_lbnNwXJzGXsbiovDlaqKBVY73qtAt_clYWlAoRucmBg5h368DLoB10GozzoAdpevev1w_LOInU</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Glazunov, G.P.</creator><creator>Andreev, A.A.</creator><creator>Baron, D.I.</creator><creator>Causey, R.A.</creator><creator>Hassanein, A.</creator><creator>Kitayevskiy, K.M.</creator><creator>Konotopskiy, A.L.</creator><creator>Lapshin, V.I.</creator><creator>Neklyudov, I.M.</creator><creator>Patokin, A.P.</creator><creator>Surkov, A.E.</creator><creator>Volkov, E.D.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20060201</creationdate><title>Hydrogen permeability and erosion behavior of W–Pd bimetallic systems</title><author>Glazunov, G.P. ; Andreev, A.A. ; Baron, D.I. ; Causey, R.A. ; Hassanein, A. ; Kitayevskiy, K.M. ; Konotopskiy, A.L. ; Lapshin, V.I. ; Neklyudov, I.M. ; Patokin, A.P. ; Surkov, A.E. ; Volkov, E.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-a87e945150925c0c93332e8f8cd6f208e74cd4ee13bd9085f169eaeaf3e608c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Controled nuclear fusion plants</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Erosion</topic><topic>Exact sciences and technology</topic><topic>Hydrogen</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Permeation</topic><topic>Plasma–material interaction</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glazunov, G.P.</creatorcontrib><creatorcontrib>Andreev, A.A.</creatorcontrib><creatorcontrib>Baron, D.I.</creatorcontrib><creatorcontrib>Causey, R.A.</creatorcontrib><creatorcontrib>Hassanein, A.</creatorcontrib><creatorcontrib>Kitayevskiy, K.M.</creatorcontrib><creatorcontrib>Konotopskiy, A.L.</creatorcontrib><creatorcontrib>Lapshin, V.I.</creatorcontrib><creatorcontrib>Neklyudov, I.M.</creatorcontrib><creatorcontrib>Patokin, A.P.</creatorcontrib><creatorcontrib>Surkov, A.E.</creatorcontrib><creatorcontrib>Volkov, E.D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glazunov, G.P.</au><au>Andreev, A.A.</au><au>Baron, D.I.</au><au>Causey, R.A.</au><au>Hassanein, A.</au><au>Kitayevskiy, K.M.</au><au>Konotopskiy, A.L.</au><au>Lapshin, V.I.</au><au>Neklyudov, I.M.</au><au>Patokin, A.P.</au><au>Surkov, A.E.</au><au>Volkov, E.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen permeability and erosion behavior of W–Pd bimetallic systems</atitle><jtitle>Fusion engineering and design</jtitle><date>2006-02-01</date><risdate>2006</risdate><volume>81</volume><issue>1</issue><spage>375</spage><epage>380</epage><pages>375-380</pages><issn>0920-3796</issn><eissn>1873-7196</eissn><coden>FEDEEE</coden><abstract>The erosion behavior of W–Pd bimetallic systems has been investigated for both hydrogen-saturated (H/Pd
∼
0.65) and unsaturated states during impact of a steady-state nitrogen plasma from a mirror Penning discharge. An essential decrease by factors of about 2–5 in the erosion rate of W was observed for hydrogen-saturated W–Pd samples in the nitrogen ion energy range from 0.8 to 1.6
keV. Possible reasons for this erosion behavior are discussed. Isotherms and isobars of hydrogen permeability through W–Pd systems were measured in the temperature range of 573–973
K and hydrogen pressure range of 1.33
×
10
2 to 10
5
Pa. It is shown that the limiting stage of permeation process is, most likely, the diffusion in the W film. The activation energy of hydrogen permeability was determined to be ∼12
kJ/mol, this being much lower than the literature data for bulk tungsten at molecular hydrogen-driven permeation. Possible mechanisms are suggested and analyzed to explain the observed decrease in the activation energy of hydrogen penetration through W–Pd systems.</abstract><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fusengdes.2005.08.034</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-3796 |
ispartof | Fusion engineering and design, 2006-02, Vol.81 (1), p.375-380 |
issn | 0920-3796 1873-7196 |
language | eng |
recordid | cdi_proquest_miscellaneous_29141965 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Controled nuclear fusion plants Energy Energy. Thermal use of fuels Erosion Exact sciences and technology Hydrogen Installations for energy generation and conversion: thermal and electrical energy Permeation Plasma–material interaction Tungsten |
title | Hydrogen permeability and erosion behavior of W–Pd bimetallic systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T20%3A12%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20permeability%20and%20erosion%20behavior%20of%20W%E2%80%93Pd%20bimetallic%20systems&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Glazunov,%20G.P.&rft.date=2006-02-01&rft.volume=81&rft.issue=1&rft.spage=375&rft.epage=380&rft.pages=375-380&rft.issn=0920-3796&rft.eissn=1873-7196&rft.coden=FEDEEE&rft_id=info:doi/10.1016/j.fusengdes.2005.08.034&rft_dat=%3Cproquest_cross%3E29141965%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29141965&rft_id=info:pmid/&rft_els_id=S0920379605005272&rfr_iscdi=true |