Network-based identification of diagnosis-specific trans-omic biomarkers via integration of multiple omics data

The integration of multiple omics data promises to reveal new insights into the pathogenic mechanisms of complex human diseases, with the potential to identify avenues for the development of targeted therapies for disease subtypes. However, the extraction of diagnostic/disease-specific biomarkers fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioSystems 2024-02, Vol.236, p.105122-105122, Article 105122
Hauptverfasser: Rashid, Md Mamunur, Hamano, Momoko, Iida, Midori, Iwata, Michio, Ko, Toshiyuki, Nomura, Seitaro, Komuro, Issei, Yamanishi, Yoshihiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105122
container_issue
container_start_page 105122
container_title BioSystems
container_volume 236
creator Rashid, Md Mamunur
Hamano, Momoko
Iida, Midori
Iwata, Michio
Ko, Toshiyuki
Nomura, Seitaro
Komuro, Issei
Yamanishi, Yoshihiro
description The integration of multiple omics data promises to reveal new insights into the pathogenic mechanisms of complex human diseases, with the potential to identify avenues for the development of targeted therapies for disease subtypes. However, the extraction of diagnostic/disease-specific biomarkers from multiple omics data with biological pathway knowledge is a challenging issue in precision medicine. In this paper, we present a novel computational method to identify diagnosis-specific trans-omic biomarkers from multiple omics data. In the algorithm, we integrated multi-class sparse canonical correlation analysis (MSCCA) and molecular pathway analysis in order to derive discriminative molecular features that are correlated across different omics layers. We applied our proposed method to analyzing proteome and metabolome data of heart failure (HF), and extracted trans-omic biomarkers for HF subtypes; specifically, ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM). We were able to detect not only individual proteins that were previously reported from single-omics studies but also correlated protein–metabolite pairs characteristic of HF disease subtypes. For example, we identified hexokinase1(HK1)–d-fructose-6-phosphate as a paired trans-omic biomarker for DCM, which could significantly perturb amino-sugar metabolism. Our proposed method is expected to be useful for various applications in precision medicine.
doi_str_mv 10.1016/j.biosystems.2024.105122
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2913449610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0303264724000078</els_id><sourcerecordid>2913449610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-56e524b1b6b8b2a7bd8f52b2768e0b8ba11651ea28f45b46a42ba2332a0ac8aa3</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhq2Kqiy0f6HysZds_ZXEe2wRtJUQXNqzNXYmyEsSbz1eEP--Xi2FI77YGj-vx_MwxqVYSyG7r9u1j4meqOBMayWUqeVWKvWOraTtVWO1MidsJbTQjepMf8rOiLairtbKD-xUW7nZtEqsWLrB8pjyfeOBcOBxwKXEMQYoMS08jXyIcLckitTQDsPhipcMCzVprsf6jRnyPWbiDxF4XAre5ZfsvJ9K3E3IDyzxAQp8ZO9HmAg_Pe_n7M_V5e-Ln8317Y9fF9-um6B7U5q2w1YZL33nrVfQ-8GOrfKq7yyKWgIpu1YiKDua1psOjPKgtFYgIFgAfc6-HN_d5fR3j1TcHCngNMGCaU9ObaQ2ZtNJUVF7RENORBlHt8uxTvXkpHAH3W7rXnW7g2531F2jn5-77P2Mw0vwv98KfD8CWGd9iJgdhYhLwCFmDMUNKb7d5R_zJJkE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913449610</pqid></control><display><type>article</type><title>Network-based identification of diagnosis-specific trans-omic biomarkers via integration of multiple omics data</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Rashid, Md Mamunur ; Hamano, Momoko ; Iida, Midori ; Iwata, Michio ; Ko, Toshiyuki ; Nomura, Seitaro ; Komuro, Issei ; Yamanishi, Yoshihiro</creator><creatorcontrib>Rashid, Md Mamunur ; Hamano, Momoko ; Iida, Midori ; Iwata, Michio ; Ko, Toshiyuki ; Nomura, Seitaro ; Komuro, Issei ; Yamanishi, Yoshihiro</creatorcontrib><description>The integration of multiple omics data promises to reveal new insights into the pathogenic mechanisms of complex human diseases, with the potential to identify avenues for the development of targeted therapies for disease subtypes. However, the extraction of diagnostic/disease-specific biomarkers from multiple omics data with biological pathway knowledge is a challenging issue in precision medicine. In this paper, we present a novel computational method to identify diagnosis-specific trans-omic biomarkers from multiple omics data. In the algorithm, we integrated multi-class sparse canonical correlation analysis (MSCCA) and molecular pathway analysis in order to derive discriminative molecular features that are correlated across different omics layers. We applied our proposed method to analyzing proteome and metabolome data of heart failure (HF), and extracted trans-omic biomarkers for HF subtypes; specifically, ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM). We were able to detect not only individual proteins that were previously reported from single-omics studies but also correlated protein–metabolite pairs characteristic of HF disease subtypes. For example, we identified hexokinase1(HK1)–d-fructose-6-phosphate as a paired trans-omic biomarker for DCM, which could significantly perturb amino-sugar metabolism. Our proposed method is expected to be useful for various applications in precision medicine.</description><identifier>ISSN: 0303-2647</identifier><identifier>EISSN: 1872-8324</identifier><identifier>DOI: 10.1016/j.biosystems.2024.105122</identifier><identifier>PMID: 38199520</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Algorithms ; Biomarkers - analysis ; Humans ; Metabolome ; Precision Medicine ; Proteome</subject><ispartof>BioSystems, 2024-02, Vol.236, p.105122-105122, Article 105122</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-56e524b1b6b8b2a7bd8f52b2768e0b8ba11651ea28f45b46a42ba2332a0ac8aa3</citedby><cites>FETCH-LOGICAL-c374t-56e524b1b6b8b2a7bd8f52b2768e0b8ba11651ea28f45b46a42ba2332a0ac8aa3</cites><orcidid>0000-0002-5811-2780 ; 0000-0003-2279-8773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biosystems.2024.105122$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38199520$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rashid, Md Mamunur</creatorcontrib><creatorcontrib>Hamano, Momoko</creatorcontrib><creatorcontrib>Iida, Midori</creatorcontrib><creatorcontrib>Iwata, Michio</creatorcontrib><creatorcontrib>Ko, Toshiyuki</creatorcontrib><creatorcontrib>Nomura, Seitaro</creatorcontrib><creatorcontrib>Komuro, Issei</creatorcontrib><creatorcontrib>Yamanishi, Yoshihiro</creatorcontrib><title>Network-based identification of diagnosis-specific trans-omic biomarkers via integration of multiple omics data</title><title>BioSystems</title><addtitle>Biosystems</addtitle><description>The integration of multiple omics data promises to reveal new insights into the pathogenic mechanisms of complex human diseases, with the potential to identify avenues for the development of targeted therapies for disease subtypes. However, the extraction of diagnostic/disease-specific biomarkers from multiple omics data with biological pathway knowledge is a challenging issue in precision medicine. In this paper, we present a novel computational method to identify diagnosis-specific trans-omic biomarkers from multiple omics data. In the algorithm, we integrated multi-class sparse canonical correlation analysis (MSCCA) and molecular pathway analysis in order to derive discriminative molecular features that are correlated across different omics layers. We applied our proposed method to analyzing proteome and metabolome data of heart failure (HF), and extracted trans-omic biomarkers for HF subtypes; specifically, ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM). We were able to detect not only individual proteins that were previously reported from single-omics studies but also correlated protein–metabolite pairs characteristic of HF disease subtypes. For example, we identified hexokinase1(HK1)–d-fructose-6-phosphate as a paired trans-omic biomarker for DCM, which could significantly perturb amino-sugar metabolism. Our proposed method is expected to be useful for various applications in precision medicine.</description><subject>Algorithms</subject><subject>Biomarkers - analysis</subject><subject>Humans</subject><subject>Metabolome</subject><subject>Precision Medicine</subject><subject>Proteome</subject><issn>0303-2647</issn><issn>1872-8324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1P3DAQhq2Kqiy0f6HysZds_ZXEe2wRtJUQXNqzNXYmyEsSbz1eEP--Xi2FI77YGj-vx_MwxqVYSyG7r9u1j4meqOBMayWUqeVWKvWOraTtVWO1MidsJbTQjepMf8rOiLairtbKD-xUW7nZtEqsWLrB8pjyfeOBcOBxwKXEMQYoMS08jXyIcLckitTQDsPhipcMCzVprsf6jRnyPWbiDxF4XAre5ZfsvJ9K3E3IDyzxAQp8ZO9HmAg_Pe_n7M_V5e-Ln8317Y9fF9-um6B7U5q2w1YZL33nrVfQ-8GOrfKq7yyKWgIpu1YiKDua1psOjPKgtFYgIFgAfc6-HN_d5fR3j1TcHCngNMGCaU9ObaQ2ZtNJUVF7RENORBlHt8uxTvXkpHAH3W7rXnW7g2531F2jn5-77P2Mw0vwv98KfD8CWGd9iJgdhYhLwCFmDMUNKb7d5R_zJJkE</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Rashid, Md Mamunur</creator><creator>Hamano, Momoko</creator><creator>Iida, Midori</creator><creator>Iwata, Michio</creator><creator>Ko, Toshiyuki</creator><creator>Nomura, Seitaro</creator><creator>Komuro, Issei</creator><creator>Yamanishi, Yoshihiro</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5811-2780</orcidid><orcidid>https://orcid.org/0000-0003-2279-8773</orcidid></search><sort><creationdate>202402</creationdate><title>Network-based identification of diagnosis-specific trans-omic biomarkers via integration of multiple omics data</title><author>Rashid, Md Mamunur ; Hamano, Momoko ; Iida, Midori ; Iwata, Michio ; Ko, Toshiyuki ; Nomura, Seitaro ; Komuro, Issei ; Yamanishi, Yoshihiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-56e524b1b6b8b2a7bd8f52b2768e0b8ba11651ea28f45b46a42ba2332a0ac8aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Biomarkers - analysis</topic><topic>Humans</topic><topic>Metabolome</topic><topic>Precision Medicine</topic><topic>Proteome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rashid, Md Mamunur</creatorcontrib><creatorcontrib>Hamano, Momoko</creatorcontrib><creatorcontrib>Iida, Midori</creatorcontrib><creatorcontrib>Iwata, Michio</creatorcontrib><creatorcontrib>Ko, Toshiyuki</creatorcontrib><creatorcontrib>Nomura, Seitaro</creatorcontrib><creatorcontrib>Komuro, Issei</creatorcontrib><creatorcontrib>Yamanishi, Yoshihiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>BioSystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rashid, Md Mamunur</au><au>Hamano, Momoko</au><au>Iida, Midori</au><au>Iwata, Michio</au><au>Ko, Toshiyuki</au><au>Nomura, Seitaro</au><au>Komuro, Issei</au><au>Yamanishi, Yoshihiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network-based identification of diagnosis-specific trans-omic biomarkers via integration of multiple omics data</atitle><jtitle>BioSystems</jtitle><addtitle>Biosystems</addtitle><date>2024-02</date><risdate>2024</risdate><volume>236</volume><spage>105122</spage><epage>105122</epage><pages>105122-105122</pages><artnum>105122</artnum><issn>0303-2647</issn><eissn>1872-8324</eissn><abstract>The integration of multiple omics data promises to reveal new insights into the pathogenic mechanisms of complex human diseases, with the potential to identify avenues for the development of targeted therapies for disease subtypes. However, the extraction of diagnostic/disease-specific biomarkers from multiple omics data with biological pathway knowledge is a challenging issue in precision medicine. In this paper, we present a novel computational method to identify diagnosis-specific trans-omic biomarkers from multiple omics data. In the algorithm, we integrated multi-class sparse canonical correlation analysis (MSCCA) and molecular pathway analysis in order to derive discriminative molecular features that are correlated across different omics layers. We applied our proposed method to analyzing proteome and metabolome data of heart failure (HF), and extracted trans-omic biomarkers for HF subtypes; specifically, ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM). We were able to detect not only individual proteins that were previously reported from single-omics studies but also correlated protein–metabolite pairs characteristic of HF disease subtypes. For example, we identified hexokinase1(HK1)–d-fructose-6-phosphate as a paired trans-omic biomarker for DCM, which could significantly perturb amino-sugar metabolism. Our proposed method is expected to be useful for various applications in precision medicine.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>38199520</pmid><doi>10.1016/j.biosystems.2024.105122</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5811-2780</orcidid><orcidid>https://orcid.org/0000-0003-2279-8773</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0303-2647
ispartof BioSystems, 2024-02, Vol.236, p.105122-105122, Article 105122
issn 0303-2647
1872-8324
language eng
recordid cdi_proquest_miscellaneous_2913449610
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Algorithms
Biomarkers - analysis
Humans
Metabolome
Precision Medicine
Proteome
title Network-based identification of diagnosis-specific trans-omic biomarkers via integration of multiple omics data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A55%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network-based%20identification%20of%20diagnosis-specific%20trans-omic%20biomarkers%20via%20integration%20of%20multiple%20omics%20data&rft.jtitle=BioSystems&rft.au=Rashid,%20Md%20Mamunur&rft.date=2024-02&rft.volume=236&rft.spage=105122&rft.epage=105122&rft.pages=105122-105122&rft.artnum=105122&rft.issn=0303-2647&rft.eissn=1872-8324&rft_id=info:doi/10.1016/j.biosystems.2024.105122&rft_dat=%3Cproquest_cross%3E2913449610%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913449610&rft_id=info:pmid/38199520&rft_els_id=S0303264724000078&rfr_iscdi=true