Calibrated Scanning Capacitance Microscopy for Two-Dimensional Carrier Mapping of n-type Implants in p-doped Si-Wafers
In our previous work we showed that a reproducible monotonic relation between Scanning Capacitance Microscopy (SCM) signal and the sample doping is obtained under appropriate SCM operating conditions. In this work, we quantitatively determine the two-dimensional carrier distribution of an n-type ion...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1278 |
---|---|
container_issue | |
container_start_page | 1275 |
container_title | |
container_volume | 772 |
creator | Brezna, W Basnar, B Golka, S Enichlmair, H Smoliner, J |
description | In our previous work we showed that a reproducible monotonic relation between Scanning Capacitance Microscopy (SCM) signal and the sample doping is obtained under appropriate SCM operating conditions. In this work, we quantitatively determine the two-dimensional carrier distribution of an n-type ion-implanted collector region of an industrial transistor sample. As the structures were large enough so that tip geometry effects could be neglected, the SCM data were converted into a two-dimensional doping distribution via a simple lookup table, which was generated from a one-dimensional doping profile measured on a reference wafer. In case the depth distribution of carriers is unknown, we show that the lookup table can also be calculated and a calibration can be carried out using e.g. the substrate doping as reference point. |
doi_str_mv | 10.1063/1.1994577 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_29133116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29133116</sourcerecordid><originalsourceid>FETCH-LOGICAL-p186t-986c8434f85c937984e5c52094183bf51ea302701c9127ed098bf4245de0804b3</originalsourceid><addsrcrecordid>eNotj0tPAyEAhEnUxLZ68B9w8kblucDRrK8mbTxYo7eGZcFgtoCw1fTf20ZPc5n5ZgaAK4LnBDfshsyJ1lxIeQKmWDLBMRWSn4IJxpojytn7OZjW-okx1VKqCfhuzRC6YkbXwxdrYgzxA7YmGxtGE62Dq2BLqjblPfSpwPVPQndh62INKZrhYC0luAJXJudjNHkY0bjPDi62eTBxrDBEmFGf8rEhoDfjXakX4MybobrLf52B14f7dfuEls-Pi_Z2iTJRzYi0aqzijHslrGZSK-6EFfTwhSjWeUGcYZhKTKwmVLoea9V5TrnoHVaYd2wGrv-4uaSvnavjZhuqdcNhmUu7uqGaMEZIw34BqA5dyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>29133116</pqid></control><display><type>conference_proceeding</type><title>Calibrated Scanning Capacitance Microscopy for Two-Dimensional Carrier Mapping of n-type Implants in p-doped Si-Wafers</title><source>AIP Journals Complete</source><creator>Brezna, W ; Basnar, B ; Golka, S ; Enichlmair, H ; Smoliner, J</creator><creatorcontrib>Brezna, W ; Basnar, B ; Golka, S ; Enichlmair, H ; Smoliner, J</creatorcontrib><description>In our previous work we showed that a reproducible monotonic relation between Scanning Capacitance Microscopy (SCM) signal and the sample doping is obtained under appropriate SCM operating conditions. In this work, we quantitatively determine the two-dimensional carrier distribution of an n-type ion-implanted collector region of an industrial transistor sample. As the structures were large enough so that tip geometry effects could be neglected, the SCM data were converted into a two-dimensional doping distribution via a simple lookup table, which was generated from a one-dimensional doping profile measured on a reference wafer. In case the depth distribution of carriers is unknown, we show that the lookup table can also be calculated and a calibration can be carried out using e.g. the substrate doping as reference point.</description><identifier>ISSN: 0094-243X</identifier><identifier>ISBN: 0735402574</identifier><identifier>ISBN: 9780735402577</identifier><identifier>DOI: 10.1063/1.1994577</identifier><language>eng</language><ispartof>Physics of Semiconductors; Part B, 2005, Vol.772, p.1275-1278</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Brezna, W</creatorcontrib><creatorcontrib>Basnar, B</creatorcontrib><creatorcontrib>Golka, S</creatorcontrib><creatorcontrib>Enichlmair, H</creatorcontrib><creatorcontrib>Smoliner, J</creatorcontrib><title>Calibrated Scanning Capacitance Microscopy for Two-Dimensional Carrier Mapping of n-type Implants in p-doped Si-Wafers</title><title>Physics of Semiconductors; Part B</title><description>In our previous work we showed that a reproducible monotonic relation between Scanning Capacitance Microscopy (SCM) signal and the sample doping is obtained under appropriate SCM operating conditions. In this work, we quantitatively determine the two-dimensional carrier distribution of an n-type ion-implanted collector region of an industrial transistor sample. As the structures were large enough so that tip geometry effects could be neglected, the SCM data were converted into a two-dimensional doping distribution via a simple lookup table, which was generated from a one-dimensional doping profile measured on a reference wafer. In case the depth distribution of carriers is unknown, we show that the lookup table can also be calculated and a calibration can be carried out using e.g. the substrate doping as reference point.</description><issn>0094-243X</issn><isbn>0735402574</isbn><isbn>9780735402577</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotj0tPAyEAhEnUxLZ68B9w8kblucDRrK8mbTxYo7eGZcFgtoCw1fTf20ZPc5n5ZgaAK4LnBDfshsyJ1lxIeQKmWDLBMRWSn4IJxpojytn7OZjW-okx1VKqCfhuzRC6YkbXwxdrYgzxA7YmGxtGE62Dq2BLqjblPfSpwPVPQndh62INKZrhYC0luAJXJudjNHkY0bjPDi62eTBxrDBEmFGf8rEhoDfjXakX4MybobrLf52B14f7dfuEls-Pi_Z2iTJRzYi0aqzijHslrGZSK-6EFfTwhSjWeUGcYZhKTKwmVLoea9V5TrnoHVaYd2wGrv-4uaSvnavjZhuqdcNhmUu7uqGaMEZIw34BqA5dyw</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Brezna, W</creator><creator>Basnar, B</creator><creator>Golka, S</creator><creator>Enichlmair, H</creator><creator>Smoliner, J</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20050101</creationdate><title>Calibrated Scanning Capacitance Microscopy for Two-Dimensional Carrier Mapping of n-type Implants in p-doped Si-Wafers</title><author>Brezna, W ; Basnar, B ; Golka, S ; Enichlmair, H ; Smoliner, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p186t-986c8434f85c937984e5c52094183bf51ea302701c9127ed098bf4245de0804b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brezna, W</creatorcontrib><creatorcontrib>Basnar, B</creatorcontrib><creatorcontrib>Golka, S</creatorcontrib><creatorcontrib>Enichlmair, H</creatorcontrib><creatorcontrib>Smoliner, J</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brezna, W</au><au>Basnar, B</au><au>Golka, S</au><au>Enichlmair, H</au><au>Smoliner, J</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Calibrated Scanning Capacitance Microscopy for Two-Dimensional Carrier Mapping of n-type Implants in p-doped Si-Wafers</atitle><btitle>Physics of Semiconductors; Part B</btitle><date>2005-01-01</date><risdate>2005</risdate><volume>772</volume><spage>1275</spage><epage>1278</epage><pages>1275-1278</pages><issn>0094-243X</issn><isbn>0735402574</isbn><isbn>9780735402577</isbn><abstract>In our previous work we showed that a reproducible monotonic relation between Scanning Capacitance Microscopy (SCM) signal and the sample doping is obtained under appropriate SCM operating conditions. In this work, we quantitatively determine the two-dimensional carrier distribution of an n-type ion-implanted collector region of an industrial transistor sample. As the structures were large enough so that tip geometry effects could be neglected, the SCM data were converted into a two-dimensional doping distribution via a simple lookup table, which was generated from a one-dimensional doping profile measured on a reference wafer. In case the depth distribution of carriers is unknown, we show that the lookup table can also be calculated and a calibration can be carried out using e.g. the substrate doping as reference point.</abstract><doi>10.1063/1.1994577</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | Physics of Semiconductors; Part B, 2005, Vol.772, p.1275-1278 |
issn | 0094-243X |
language | eng |
recordid | cdi_proquest_miscellaneous_29133116 |
source | AIP Journals Complete |
title | Calibrated Scanning Capacitance Microscopy for Two-Dimensional Carrier Mapping of n-type Implants in p-doped Si-Wafers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A26%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Calibrated%20Scanning%20Capacitance%20Microscopy%20for%20Two-Dimensional%20Carrier%20Mapping%20of%20n-type%20Implants%20in%20p-doped%20Si-Wafers&rft.btitle=Physics%20of%20Semiconductors;%20Part%20B&rft.au=Brezna,%20W&rft.date=2005-01-01&rft.volume=772&rft.spage=1275&rft.epage=1278&rft.pages=1275-1278&rft.issn=0094-243X&rft.isbn=0735402574&rft.isbn_list=9780735402577&rft_id=info:doi/10.1063/1.1994577&rft_dat=%3Cproquest%3E29133116%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29133116&rft_id=info:pmid/&rfr_iscdi=true |