Human fetal brain self-organizes into long-term expanding organoids
Human brain development involves an orchestrated, massive neural progenitor expansion while a multi-cellular tissue architecture is established. Continuously expanding organoids can be grown directly from multiple somatic tissues, yet to date, brain organoids can solely be established from pluripote...
Gespeichert in:
Veröffentlicht in: | Cell 2024-02, Vol.187 (3), p.712-732.e38 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 732.e38 |
---|---|
container_issue | 3 |
container_start_page | 712 |
container_title | Cell |
container_volume | 187 |
creator | Hendriks, Delilah Pagliaro, Anna Andreatta, Francesco Ma, Ziliang van Giessen, Joey Massalini, Simone López-Iglesias, Carmen van Son, Gijs J.F. DeMartino, Jeff Damen, J. Mirjam A. Zoutendijk, Iris Staliarova, Nadzeya Bredenoord, Annelien L. Holstege, Frank C.P. Peters, Peter J. Margaritis, Thanasis Chuva de Sousa Lopes, Susana Wu, Wei Clevers, Hans Artegiani, Benedetta |
description | Human brain development involves an orchestrated, massive neural progenitor expansion while a multi-cellular tissue architecture is established. Continuously expanding organoids can be grown directly from multiple somatic tissues, yet to date, brain organoids can solely be established from pluripotent stem cells. Here, we show that healthy human fetal brain in vitro self-organizes into organoids (FeBOs), phenocopying aspects of in vivo cellular heterogeneity and complex organization. FeBOs can be expanded over long time periods. FeBO growth requires maintenance of tissue integrity, which ensures production of a tissue-like extracellular matrix (ECM) niche, ultimately endowing FeBO expansion. FeBO lines derived from different areas of the central nervous system (CNS), including dorsal and ventral forebrain, preserve their regional identity and allow to probe aspects of positional identity. Using CRISPR-Cas9, we showcase the generation of syngeneic mutant FeBO lines for the study of brain cancer. Taken together, FeBOs constitute a complementary CNS organoid platform.
[Display omitted]
•Human fetal brain organoids (FeBOs) display cellular heterogeneity and can be expanded•FeBOs produce a tissue-like ECM niche and enable ECM perturbation studies•Derivation of regional FeBOs allows the study of regional morphogen effects•CRISPR-engineered FeBOs are a scalable bottom-up tumor modeling platform
Tissue-derived human fetal brain organoids (FeBOs) are established from different anatomical regions that can be expanded in culture. FeBOs may help understand developmental and disease-related biology. |
doi_str_mv | 10.1016/j.cell.2023.12.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2913084137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867423013442</els_id><sourcerecordid>2913084137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-a84a367aba3ab7368f156047d1c22057656c565caddbe3a10c590329c30b72623</originalsourceid><addsrcrecordid>eNp9kDFPwzAQRi0EoqXwBxhQRpaEsx3bicSCKqBIlVhgthznUrlKnGKnCPj1pLQwMt3yvifdI-SSQkaBypt1ZrFtMwaMZ5RlQNkRmVIoVZpTxY7JFKBkaSFVPiFnMa4BoBBCnJIJL2iZl1JNyXyx7YxPGhxMm1TBOJ9EbJu0Dyvj3RfGxPmhT9rer9IBQ5fgx8b42vlV8oP0ro7n5KQxbcSLw52R14f7l_kiXT4_Ps3vlqnNAYbUFLnhUpnKcFMpLouGCgm5qqllDISSQlohhTV1XSE3FKwogbPScqgUk4zPyPXeuwn92xbjoDsXdwmMx34bNSsphyKnXI0o26M29DEGbPQmuM6ET01B7-Lptd4t9S6epkyP8cbR1cG_rTqs_ya_tUbgdg_g-OW7w6Cjdegt1i6gHXTdu__8327Qf0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913084137</pqid></control><display><type>article</type><title>Human fetal brain self-organizes into long-term expanding organoids</title><source>Access via ScienceDirect (Elsevier)</source><creator>Hendriks, Delilah ; Pagliaro, Anna ; Andreatta, Francesco ; Ma, Ziliang ; van Giessen, Joey ; Massalini, Simone ; López-Iglesias, Carmen ; van Son, Gijs J.F. ; DeMartino, Jeff ; Damen, J. Mirjam A. ; Zoutendijk, Iris ; Staliarova, Nadzeya ; Bredenoord, Annelien L. ; Holstege, Frank C.P. ; Peters, Peter J. ; Margaritis, Thanasis ; Chuva de Sousa Lopes, Susana ; Wu, Wei ; Clevers, Hans ; Artegiani, Benedetta</creator><creatorcontrib>Hendriks, Delilah ; Pagliaro, Anna ; Andreatta, Francesco ; Ma, Ziliang ; van Giessen, Joey ; Massalini, Simone ; López-Iglesias, Carmen ; van Son, Gijs J.F. ; DeMartino, Jeff ; Damen, J. Mirjam A. ; Zoutendijk, Iris ; Staliarova, Nadzeya ; Bredenoord, Annelien L. ; Holstege, Frank C.P. ; Peters, Peter J. ; Margaritis, Thanasis ; Chuva de Sousa Lopes, Susana ; Wu, Wei ; Clevers, Hans ; Artegiani, Benedetta</creatorcontrib><description>Human brain development involves an orchestrated, massive neural progenitor expansion while a multi-cellular tissue architecture is established. Continuously expanding organoids can be grown directly from multiple somatic tissues, yet to date, brain organoids can solely be established from pluripotent stem cells. Here, we show that healthy human fetal brain in vitro self-organizes into organoids (FeBOs), phenocopying aspects of in vivo cellular heterogeneity and complex organization. FeBOs can be expanded over long time periods. FeBO growth requires maintenance of tissue integrity, which ensures production of a tissue-like extracellular matrix (ECM) niche, ultimately endowing FeBO expansion. FeBO lines derived from different areas of the central nervous system (CNS), including dorsal and ventral forebrain, preserve their regional identity and allow to probe aspects of positional identity. Using CRISPR-Cas9, we showcase the generation of syngeneic mutant FeBO lines for the study of brain cancer. Taken together, FeBOs constitute a complementary CNS organoid platform.
[Display omitted]
•Human fetal brain organoids (FeBOs) display cellular heterogeneity and can be expanded•FeBOs produce a tissue-like ECM niche and enable ECM perturbation studies•Derivation of regional FeBOs allows the study of regional morphogen effects•CRISPR-engineered FeBOs are a scalable bottom-up tumor modeling platform
Tissue-derived human fetal brain organoids (FeBOs) are established from different anatomical regions that can be expanded in culture. FeBOs may help understand developmental and disease-related biology.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2023.12.012</identifier><identifier>PMID: 38194967</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>brain cancer ; brain development ; CRISPR-Cas9 ; ECM ; human fetal brain ; morphogens ; organoids ; regional identity ; tissue culture ; tumor modeling</subject><ispartof>Cell, 2024-02, Vol.187 (3), p.712-732.e38</ispartof><rights>2023 The Author(s)</rights><rights>Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-a84a367aba3ab7368f156047d1c22057656c565caddbe3a10c590329c30b72623</citedby><cites>FETCH-LOGICAL-c400t-a84a367aba3ab7368f156047d1c22057656c565caddbe3a10c590329c30b72623</cites><orcidid>0000-0002-3077-5582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cell.2023.12.012$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38194967$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hendriks, Delilah</creatorcontrib><creatorcontrib>Pagliaro, Anna</creatorcontrib><creatorcontrib>Andreatta, Francesco</creatorcontrib><creatorcontrib>Ma, Ziliang</creatorcontrib><creatorcontrib>van Giessen, Joey</creatorcontrib><creatorcontrib>Massalini, Simone</creatorcontrib><creatorcontrib>López-Iglesias, Carmen</creatorcontrib><creatorcontrib>van Son, Gijs J.F.</creatorcontrib><creatorcontrib>DeMartino, Jeff</creatorcontrib><creatorcontrib>Damen, J. Mirjam A.</creatorcontrib><creatorcontrib>Zoutendijk, Iris</creatorcontrib><creatorcontrib>Staliarova, Nadzeya</creatorcontrib><creatorcontrib>Bredenoord, Annelien L.</creatorcontrib><creatorcontrib>Holstege, Frank C.P.</creatorcontrib><creatorcontrib>Peters, Peter J.</creatorcontrib><creatorcontrib>Margaritis, Thanasis</creatorcontrib><creatorcontrib>Chuva de Sousa Lopes, Susana</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Clevers, Hans</creatorcontrib><creatorcontrib>Artegiani, Benedetta</creatorcontrib><title>Human fetal brain self-organizes into long-term expanding organoids</title><title>Cell</title><addtitle>Cell</addtitle><description>Human brain development involves an orchestrated, massive neural progenitor expansion while a multi-cellular tissue architecture is established. Continuously expanding organoids can be grown directly from multiple somatic tissues, yet to date, brain organoids can solely be established from pluripotent stem cells. Here, we show that healthy human fetal brain in vitro self-organizes into organoids (FeBOs), phenocopying aspects of in vivo cellular heterogeneity and complex organization. FeBOs can be expanded over long time periods. FeBO growth requires maintenance of tissue integrity, which ensures production of a tissue-like extracellular matrix (ECM) niche, ultimately endowing FeBO expansion. FeBO lines derived from different areas of the central nervous system (CNS), including dorsal and ventral forebrain, preserve their regional identity and allow to probe aspects of positional identity. Using CRISPR-Cas9, we showcase the generation of syngeneic mutant FeBO lines for the study of brain cancer. Taken together, FeBOs constitute a complementary CNS organoid platform.
[Display omitted]
•Human fetal brain organoids (FeBOs) display cellular heterogeneity and can be expanded•FeBOs produce a tissue-like ECM niche and enable ECM perturbation studies•Derivation of regional FeBOs allows the study of regional morphogen effects•CRISPR-engineered FeBOs are a scalable bottom-up tumor modeling platform
Tissue-derived human fetal brain organoids (FeBOs) are established from different anatomical regions that can be expanded in culture. FeBOs may help understand developmental and disease-related biology.</description><subject>brain cancer</subject><subject>brain development</subject><subject>CRISPR-Cas9</subject><subject>ECM</subject><subject>human fetal brain</subject><subject>morphogens</subject><subject>organoids</subject><subject>regional identity</subject><subject>tissue culture</subject><subject>tumor modeling</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQRi0EoqXwBxhQRpaEsx3bicSCKqBIlVhgthznUrlKnGKnCPj1pLQwMt3yvifdI-SSQkaBypt1ZrFtMwaMZ5RlQNkRmVIoVZpTxY7JFKBkaSFVPiFnMa4BoBBCnJIJL2iZl1JNyXyx7YxPGhxMm1TBOJ9EbJu0Dyvj3RfGxPmhT9rer9IBQ5fgx8b42vlV8oP0ro7n5KQxbcSLw52R14f7l_kiXT4_Ps3vlqnNAYbUFLnhUpnKcFMpLouGCgm5qqllDISSQlohhTV1XSE3FKwogbPScqgUk4zPyPXeuwn92xbjoDsXdwmMx34bNSsphyKnXI0o26M29DEGbPQmuM6ET01B7-Lptd4t9S6epkyP8cbR1cG_rTqs_ya_tUbgdg_g-OW7w6Cjdegt1i6gHXTdu__8327Qf0w</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Hendriks, Delilah</creator><creator>Pagliaro, Anna</creator><creator>Andreatta, Francesco</creator><creator>Ma, Ziliang</creator><creator>van Giessen, Joey</creator><creator>Massalini, Simone</creator><creator>López-Iglesias, Carmen</creator><creator>van Son, Gijs J.F.</creator><creator>DeMartino, Jeff</creator><creator>Damen, J. Mirjam A.</creator><creator>Zoutendijk, Iris</creator><creator>Staliarova, Nadzeya</creator><creator>Bredenoord, Annelien L.</creator><creator>Holstege, Frank C.P.</creator><creator>Peters, Peter J.</creator><creator>Margaritis, Thanasis</creator><creator>Chuva de Sousa Lopes, Susana</creator><creator>Wu, Wei</creator><creator>Clevers, Hans</creator><creator>Artegiani, Benedetta</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3077-5582</orcidid></search><sort><creationdate>20240201</creationdate><title>Human fetal brain self-organizes into long-term expanding organoids</title><author>Hendriks, Delilah ; Pagliaro, Anna ; Andreatta, Francesco ; Ma, Ziliang ; van Giessen, Joey ; Massalini, Simone ; López-Iglesias, Carmen ; van Son, Gijs J.F. ; DeMartino, Jeff ; Damen, J. Mirjam A. ; Zoutendijk, Iris ; Staliarova, Nadzeya ; Bredenoord, Annelien L. ; Holstege, Frank C.P. ; Peters, Peter J. ; Margaritis, Thanasis ; Chuva de Sousa Lopes, Susana ; Wu, Wei ; Clevers, Hans ; Artegiani, Benedetta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-a84a367aba3ab7368f156047d1c22057656c565caddbe3a10c590329c30b72623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>brain cancer</topic><topic>brain development</topic><topic>CRISPR-Cas9</topic><topic>ECM</topic><topic>human fetal brain</topic><topic>morphogens</topic><topic>organoids</topic><topic>regional identity</topic><topic>tissue culture</topic><topic>tumor modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hendriks, Delilah</creatorcontrib><creatorcontrib>Pagliaro, Anna</creatorcontrib><creatorcontrib>Andreatta, Francesco</creatorcontrib><creatorcontrib>Ma, Ziliang</creatorcontrib><creatorcontrib>van Giessen, Joey</creatorcontrib><creatorcontrib>Massalini, Simone</creatorcontrib><creatorcontrib>López-Iglesias, Carmen</creatorcontrib><creatorcontrib>van Son, Gijs J.F.</creatorcontrib><creatorcontrib>DeMartino, Jeff</creatorcontrib><creatorcontrib>Damen, J. Mirjam A.</creatorcontrib><creatorcontrib>Zoutendijk, Iris</creatorcontrib><creatorcontrib>Staliarova, Nadzeya</creatorcontrib><creatorcontrib>Bredenoord, Annelien L.</creatorcontrib><creatorcontrib>Holstege, Frank C.P.</creatorcontrib><creatorcontrib>Peters, Peter J.</creatorcontrib><creatorcontrib>Margaritis, Thanasis</creatorcontrib><creatorcontrib>Chuva de Sousa Lopes, Susana</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Clevers, Hans</creatorcontrib><creatorcontrib>Artegiani, Benedetta</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hendriks, Delilah</au><au>Pagliaro, Anna</au><au>Andreatta, Francesco</au><au>Ma, Ziliang</au><au>van Giessen, Joey</au><au>Massalini, Simone</au><au>López-Iglesias, Carmen</au><au>van Son, Gijs J.F.</au><au>DeMartino, Jeff</au><au>Damen, J. Mirjam A.</au><au>Zoutendijk, Iris</au><au>Staliarova, Nadzeya</au><au>Bredenoord, Annelien L.</au><au>Holstege, Frank C.P.</au><au>Peters, Peter J.</au><au>Margaritis, Thanasis</au><au>Chuva de Sousa Lopes, Susana</au><au>Wu, Wei</au><au>Clevers, Hans</au><au>Artegiani, Benedetta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human fetal brain self-organizes into long-term expanding organoids</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>187</volume><issue>3</issue><spage>712</spage><epage>732.e38</epage><pages>712-732.e38</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Human brain development involves an orchestrated, massive neural progenitor expansion while a multi-cellular tissue architecture is established. Continuously expanding organoids can be grown directly from multiple somatic tissues, yet to date, brain organoids can solely be established from pluripotent stem cells. Here, we show that healthy human fetal brain in vitro self-organizes into organoids (FeBOs), phenocopying aspects of in vivo cellular heterogeneity and complex organization. FeBOs can be expanded over long time periods. FeBO growth requires maintenance of tissue integrity, which ensures production of a tissue-like extracellular matrix (ECM) niche, ultimately endowing FeBO expansion. FeBO lines derived from different areas of the central nervous system (CNS), including dorsal and ventral forebrain, preserve their regional identity and allow to probe aspects of positional identity. Using CRISPR-Cas9, we showcase the generation of syngeneic mutant FeBO lines for the study of brain cancer. Taken together, FeBOs constitute a complementary CNS organoid platform.
[Display omitted]
•Human fetal brain organoids (FeBOs) display cellular heterogeneity and can be expanded•FeBOs produce a tissue-like ECM niche and enable ECM perturbation studies•Derivation of regional FeBOs allows the study of regional morphogen effects•CRISPR-engineered FeBOs are a scalable bottom-up tumor modeling platform
Tissue-derived human fetal brain organoids (FeBOs) are established from different anatomical regions that can be expanded in culture. FeBOs may help understand developmental and disease-related biology.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38194967</pmid><doi>10.1016/j.cell.2023.12.012</doi><orcidid>https://orcid.org/0000-0002-3077-5582</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2024-02, Vol.187 (3), p.712-732.e38 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_proquest_miscellaneous_2913084137 |
source | Access via ScienceDirect (Elsevier) |
subjects | brain cancer brain development CRISPR-Cas9 ECM human fetal brain morphogens organoids regional identity tissue culture tumor modeling |
title | Human fetal brain self-organizes into long-term expanding organoids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T13%3A04%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20fetal%20brain%20self-organizes%20into%20long-term%20expanding%20organoids&rft.jtitle=Cell&rft.au=Hendriks,%20Delilah&rft.date=2024-02-01&rft.volume=187&rft.issue=3&rft.spage=712&rft.epage=732.e38&rft.pages=712-732.e38&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2023.12.012&rft_dat=%3Cproquest_cross%3E2913084137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913084137&rft_id=info:pmid/38194967&rft_els_id=S0092867423013442&rfr_iscdi=true |