Human fetal brain self-organizes into long-term expanding organoids

Human brain development involves an orchestrated, massive neural progenitor expansion while a multi-cellular tissue architecture is established. Continuously expanding organoids can be grown directly from multiple somatic tissues, yet to date, brain organoids can solely be established from pluripote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2024-02, Vol.187 (3), p.712-732.e38
Hauptverfasser: Hendriks, Delilah, Pagliaro, Anna, Andreatta, Francesco, Ma, Ziliang, van Giessen, Joey, Massalini, Simone, López-Iglesias, Carmen, van Son, Gijs J.F., DeMartino, Jeff, Damen, J. Mirjam A., Zoutendijk, Iris, Staliarova, Nadzeya, Bredenoord, Annelien L., Holstege, Frank C.P., Peters, Peter J., Margaritis, Thanasis, Chuva de Sousa Lopes, Susana, Wu, Wei, Clevers, Hans, Artegiani, Benedetta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 732.e38
container_issue 3
container_start_page 712
container_title Cell
container_volume 187
creator Hendriks, Delilah
Pagliaro, Anna
Andreatta, Francesco
Ma, Ziliang
van Giessen, Joey
Massalini, Simone
López-Iglesias, Carmen
van Son, Gijs J.F.
DeMartino, Jeff
Damen, J. Mirjam A.
Zoutendijk, Iris
Staliarova, Nadzeya
Bredenoord, Annelien L.
Holstege, Frank C.P.
Peters, Peter J.
Margaritis, Thanasis
Chuva de Sousa Lopes, Susana
Wu, Wei
Clevers, Hans
Artegiani, Benedetta
description Human brain development involves an orchestrated, massive neural progenitor expansion while a multi-cellular tissue architecture is established. Continuously expanding organoids can be grown directly from multiple somatic tissues, yet to date, brain organoids can solely be established from pluripotent stem cells. Here, we show that healthy human fetal brain in vitro self-organizes into organoids (FeBOs), phenocopying aspects of in vivo cellular heterogeneity and complex organization. FeBOs can be expanded over long time periods. FeBO growth requires maintenance of tissue integrity, which ensures production of a tissue-like extracellular matrix (ECM) niche, ultimately endowing FeBO expansion. FeBO lines derived from different areas of the central nervous system (CNS), including dorsal and ventral forebrain, preserve their regional identity and allow to probe aspects of positional identity. Using CRISPR-Cas9, we showcase the generation of syngeneic mutant FeBO lines for the study of brain cancer. Taken together, FeBOs constitute a complementary CNS organoid platform. [Display omitted] •Human fetal brain organoids (FeBOs) display cellular heterogeneity and can be expanded•FeBOs produce a tissue-like ECM niche and enable ECM perturbation studies•Derivation of regional FeBOs allows the study of regional morphogen effects•CRISPR-engineered FeBOs are a scalable bottom-up tumor modeling platform Tissue-derived human fetal brain organoids (FeBOs) are established from different anatomical regions that can be expanded in culture. FeBOs may help understand developmental and disease-related biology.
doi_str_mv 10.1016/j.cell.2023.12.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2913084137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867423013442</els_id><sourcerecordid>2913084137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-a84a367aba3ab7368f156047d1c22057656c565caddbe3a10c590329c30b72623</originalsourceid><addsrcrecordid>eNp9kDFPwzAQRi0EoqXwBxhQRpaEsx3bicSCKqBIlVhgthznUrlKnGKnCPj1pLQwMt3yvifdI-SSQkaBypt1ZrFtMwaMZ5RlQNkRmVIoVZpTxY7JFKBkaSFVPiFnMa4BoBBCnJIJL2iZl1JNyXyx7YxPGhxMm1TBOJ9EbJu0Dyvj3RfGxPmhT9rer9IBQ5fgx8b42vlV8oP0ro7n5KQxbcSLw52R14f7l_kiXT4_Ps3vlqnNAYbUFLnhUpnKcFMpLouGCgm5qqllDISSQlohhTV1XSE3FKwogbPScqgUk4zPyPXeuwn92xbjoDsXdwmMx34bNSsphyKnXI0o26M29DEGbPQmuM6ET01B7-Lptd4t9S6epkyP8cbR1cG_rTqs_ya_tUbgdg_g-OW7w6Cjdegt1i6gHXTdu__8327Qf0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913084137</pqid></control><display><type>article</type><title>Human fetal brain self-organizes into long-term expanding organoids</title><source>Access via ScienceDirect (Elsevier)</source><creator>Hendriks, Delilah ; Pagliaro, Anna ; Andreatta, Francesco ; Ma, Ziliang ; van Giessen, Joey ; Massalini, Simone ; López-Iglesias, Carmen ; van Son, Gijs J.F. ; DeMartino, Jeff ; Damen, J. Mirjam A. ; Zoutendijk, Iris ; Staliarova, Nadzeya ; Bredenoord, Annelien L. ; Holstege, Frank C.P. ; Peters, Peter J. ; Margaritis, Thanasis ; Chuva de Sousa Lopes, Susana ; Wu, Wei ; Clevers, Hans ; Artegiani, Benedetta</creator><creatorcontrib>Hendriks, Delilah ; Pagliaro, Anna ; Andreatta, Francesco ; Ma, Ziliang ; van Giessen, Joey ; Massalini, Simone ; López-Iglesias, Carmen ; van Son, Gijs J.F. ; DeMartino, Jeff ; Damen, J. Mirjam A. ; Zoutendijk, Iris ; Staliarova, Nadzeya ; Bredenoord, Annelien L. ; Holstege, Frank C.P. ; Peters, Peter J. ; Margaritis, Thanasis ; Chuva de Sousa Lopes, Susana ; Wu, Wei ; Clevers, Hans ; Artegiani, Benedetta</creatorcontrib><description>Human brain development involves an orchestrated, massive neural progenitor expansion while a multi-cellular tissue architecture is established. Continuously expanding organoids can be grown directly from multiple somatic tissues, yet to date, brain organoids can solely be established from pluripotent stem cells. Here, we show that healthy human fetal brain in vitro self-organizes into organoids (FeBOs), phenocopying aspects of in vivo cellular heterogeneity and complex organization. FeBOs can be expanded over long time periods. FeBO growth requires maintenance of tissue integrity, which ensures production of a tissue-like extracellular matrix (ECM) niche, ultimately endowing FeBO expansion. FeBO lines derived from different areas of the central nervous system (CNS), including dorsal and ventral forebrain, preserve their regional identity and allow to probe aspects of positional identity. Using CRISPR-Cas9, we showcase the generation of syngeneic mutant FeBO lines for the study of brain cancer. Taken together, FeBOs constitute a complementary CNS organoid platform. [Display omitted] •Human fetal brain organoids (FeBOs) display cellular heterogeneity and can be expanded•FeBOs produce a tissue-like ECM niche and enable ECM perturbation studies•Derivation of regional FeBOs allows the study of regional morphogen effects•CRISPR-engineered FeBOs are a scalable bottom-up tumor modeling platform Tissue-derived human fetal brain organoids (FeBOs) are established from different anatomical regions that can be expanded in culture. FeBOs may help understand developmental and disease-related biology.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2023.12.012</identifier><identifier>PMID: 38194967</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>brain cancer ; brain development ; CRISPR-Cas9 ; ECM ; human fetal brain ; morphogens ; organoids ; regional identity ; tissue culture ; tumor modeling</subject><ispartof>Cell, 2024-02, Vol.187 (3), p.712-732.e38</ispartof><rights>2023 The Author(s)</rights><rights>Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-a84a367aba3ab7368f156047d1c22057656c565caddbe3a10c590329c30b72623</citedby><cites>FETCH-LOGICAL-c400t-a84a367aba3ab7368f156047d1c22057656c565caddbe3a10c590329c30b72623</cites><orcidid>0000-0002-3077-5582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cell.2023.12.012$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38194967$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hendriks, Delilah</creatorcontrib><creatorcontrib>Pagliaro, Anna</creatorcontrib><creatorcontrib>Andreatta, Francesco</creatorcontrib><creatorcontrib>Ma, Ziliang</creatorcontrib><creatorcontrib>van Giessen, Joey</creatorcontrib><creatorcontrib>Massalini, Simone</creatorcontrib><creatorcontrib>López-Iglesias, Carmen</creatorcontrib><creatorcontrib>van Son, Gijs J.F.</creatorcontrib><creatorcontrib>DeMartino, Jeff</creatorcontrib><creatorcontrib>Damen, J. Mirjam A.</creatorcontrib><creatorcontrib>Zoutendijk, Iris</creatorcontrib><creatorcontrib>Staliarova, Nadzeya</creatorcontrib><creatorcontrib>Bredenoord, Annelien L.</creatorcontrib><creatorcontrib>Holstege, Frank C.P.</creatorcontrib><creatorcontrib>Peters, Peter J.</creatorcontrib><creatorcontrib>Margaritis, Thanasis</creatorcontrib><creatorcontrib>Chuva de Sousa Lopes, Susana</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Clevers, Hans</creatorcontrib><creatorcontrib>Artegiani, Benedetta</creatorcontrib><title>Human fetal brain self-organizes into long-term expanding organoids</title><title>Cell</title><addtitle>Cell</addtitle><description>Human brain development involves an orchestrated, massive neural progenitor expansion while a multi-cellular tissue architecture is established. Continuously expanding organoids can be grown directly from multiple somatic tissues, yet to date, brain organoids can solely be established from pluripotent stem cells. Here, we show that healthy human fetal brain in vitro self-organizes into organoids (FeBOs), phenocopying aspects of in vivo cellular heterogeneity and complex organization. FeBOs can be expanded over long time periods. FeBO growth requires maintenance of tissue integrity, which ensures production of a tissue-like extracellular matrix (ECM) niche, ultimately endowing FeBO expansion. FeBO lines derived from different areas of the central nervous system (CNS), including dorsal and ventral forebrain, preserve their regional identity and allow to probe aspects of positional identity. Using CRISPR-Cas9, we showcase the generation of syngeneic mutant FeBO lines for the study of brain cancer. Taken together, FeBOs constitute a complementary CNS organoid platform. [Display omitted] •Human fetal brain organoids (FeBOs) display cellular heterogeneity and can be expanded•FeBOs produce a tissue-like ECM niche and enable ECM perturbation studies•Derivation of regional FeBOs allows the study of regional morphogen effects•CRISPR-engineered FeBOs are a scalable bottom-up tumor modeling platform Tissue-derived human fetal brain organoids (FeBOs) are established from different anatomical regions that can be expanded in culture. FeBOs may help understand developmental and disease-related biology.</description><subject>brain cancer</subject><subject>brain development</subject><subject>CRISPR-Cas9</subject><subject>ECM</subject><subject>human fetal brain</subject><subject>morphogens</subject><subject>organoids</subject><subject>regional identity</subject><subject>tissue culture</subject><subject>tumor modeling</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQRi0EoqXwBxhQRpaEsx3bicSCKqBIlVhgthznUrlKnGKnCPj1pLQwMt3yvifdI-SSQkaBypt1ZrFtMwaMZ5RlQNkRmVIoVZpTxY7JFKBkaSFVPiFnMa4BoBBCnJIJL2iZl1JNyXyx7YxPGhxMm1TBOJ9EbJu0Dyvj3RfGxPmhT9rer9IBQ5fgx8b42vlV8oP0ro7n5KQxbcSLw52R14f7l_kiXT4_Ps3vlqnNAYbUFLnhUpnKcFMpLouGCgm5qqllDISSQlohhTV1XSE3FKwogbPScqgUk4zPyPXeuwn92xbjoDsXdwmMx34bNSsphyKnXI0o26M29DEGbPQmuM6ET01B7-Lptd4t9S6epkyP8cbR1cG_rTqs_ya_tUbgdg_g-OW7w6Cjdegt1i6gHXTdu__8327Qf0w</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Hendriks, Delilah</creator><creator>Pagliaro, Anna</creator><creator>Andreatta, Francesco</creator><creator>Ma, Ziliang</creator><creator>van Giessen, Joey</creator><creator>Massalini, Simone</creator><creator>López-Iglesias, Carmen</creator><creator>van Son, Gijs J.F.</creator><creator>DeMartino, Jeff</creator><creator>Damen, J. Mirjam A.</creator><creator>Zoutendijk, Iris</creator><creator>Staliarova, Nadzeya</creator><creator>Bredenoord, Annelien L.</creator><creator>Holstege, Frank C.P.</creator><creator>Peters, Peter J.</creator><creator>Margaritis, Thanasis</creator><creator>Chuva de Sousa Lopes, Susana</creator><creator>Wu, Wei</creator><creator>Clevers, Hans</creator><creator>Artegiani, Benedetta</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3077-5582</orcidid></search><sort><creationdate>20240201</creationdate><title>Human fetal brain self-organizes into long-term expanding organoids</title><author>Hendriks, Delilah ; Pagliaro, Anna ; Andreatta, Francesco ; Ma, Ziliang ; van Giessen, Joey ; Massalini, Simone ; López-Iglesias, Carmen ; van Son, Gijs J.F. ; DeMartino, Jeff ; Damen, J. Mirjam A. ; Zoutendijk, Iris ; Staliarova, Nadzeya ; Bredenoord, Annelien L. ; Holstege, Frank C.P. ; Peters, Peter J. ; Margaritis, Thanasis ; Chuva de Sousa Lopes, Susana ; Wu, Wei ; Clevers, Hans ; Artegiani, Benedetta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-a84a367aba3ab7368f156047d1c22057656c565caddbe3a10c590329c30b72623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>brain cancer</topic><topic>brain development</topic><topic>CRISPR-Cas9</topic><topic>ECM</topic><topic>human fetal brain</topic><topic>morphogens</topic><topic>organoids</topic><topic>regional identity</topic><topic>tissue culture</topic><topic>tumor modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hendriks, Delilah</creatorcontrib><creatorcontrib>Pagliaro, Anna</creatorcontrib><creatorcontrib>Andreatta, Francesco</creatorcontrib><creatorcontrib>Ma, Ziliang</creatorcontrib><creatorcontrib>van Giessen, Joey</creatorcontrib><creatorcontrib>Massalini, Simone</creatorcontrib><creatorcontrib>López-Iglesias, Carmen</creatorcontrib><creatorcontrib>van Son, Gijs J.F.</creatorcontrib><creatorcontrib>DeMartino, Jeff</creatorcontrib><creatorcontrib>Damen, J. Mirjam A.</creatorcontrib><creatorcontrib>Zoutendijk, Iris</creatorcontrib><creatorcontrib>Staliarova, Nadzeya</creatorcontrib><creatorcontrib>Bredenoord, Annelien L.</creatorcontrib><creatorcontrib>Holstege, Frank C.P.</creatorcontrib><creatorcontrib>Peters, Peter J.</creatorcontrib><creatorcontrib>Margaritis, Thanasis</creatorcontrib><creatorcontrib>Chuva de Sousa Lopes, Susana</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Clevers, Hans</creatorcontrib><creatorcontrib>Artegiani, Benedetta</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hendriks, Delilah</au><au>Pagliaro, Anna</au><au>Andreatta, Francesco</au><au>Ma, Ziliang</au><au>van Giessen, Joey</au><au>Massalini, Simone</au><au>López-Iglesias, Carmen</au><au>van Son, Gijs J.F.</au><au>DeMartino, Jeff</au><au>Damen, J. Mirjam A.</au><au>Zoutendijk, Iris</au><au>Staliarova, Nadzeya</au><au>Bredenoord, Annelien L.</au><au>Holstege, Frank C.P.</au><au>Peters, Peter J.</au><au>Margaritis, Thanasis</au><au>Chuva de Sousa Lopes, Susana</au><au>Wu, Wei</au><au>Clevers, Hans</au><au>Artegiani, Benedetta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human fetal brain self-organizes into long-term expanding organoids</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>187</volume><issue>3</issue><spage>712</spage><epage>732.e38</epage><pages>712-732.e38</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Human brain development involves an orchestrated, massive neural progenitor expansion while a multi-cellular tissue architecture is established. Continuously expanding organoids can be grown directly from multiple somatic tissues, yet to date, brain organoids can solely be established from pluripotent stem cells. Here, we show that healthy human fetal brain in vitro self-organizes into organoids (FeBOs), phenocopying aspects of in vivo cellular heterogeneity and complex organization. FeBOs can be expanded over long time periods. FeBO growth requires maintenance of tissue integrity, which ensures production of a tissue-like extracellular matrix (ECM) niche, ultimately endowing FeBO expansion. FeBO lines derived from different areas of the central nervous system (CNS), including dorsal and ventral forebrain, preserve their regional identity and allow to probe aspects of positional identity. Using CRISPR-Cas9, we showcase the generation of syngeneic mutant FeBO lines for the study of brain cancer. Taken together, FeBOs constitute a complementary CNS organoid platform. [Display omitted] •Human fetal brain organoids (FeBOs) display cellular heterogeneity and can be expanded•FeBOs produce a tissue-like ECM niche and enable ECM perturbation studies•Derivation of regional FeBOs allows the study of regional morphogen effects•CRISPR-engineered FeBOs are a scalable bottom-up tumor modeling platform Tissue-derived human fetal brain organoids (FeBOs) are established from different anatomical regions that can be expanded in culture. FeBOs may help understand developmental and disease-related biology.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38194967</pmid><doi>10.1016/j.cell.2023.12.012</doi><orcidid>https://orcid.org/0000-0002-3077-5582</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2024-02, Vol.187 (3), p.712-732.e38
issn 0092-8674
1097-4172
language eng
recordid cdi_proquest_miscellaneous_2913084137
source Access via ScienceDirect (Elsevier)
subjects brain cancer
brain development
CRISPR-Cas9
ECM
human fetal brain
morphogens
organoids
regional identity
tissue culture
tumor modeling
title Human fetal brain self-organizes into long-term expanding organoids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T13%3A04%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20fetal%20brain%20self-organizes%20into%20long-term%20expanding%20organoids&rft.jtitle=Cell&rft.au=Hendriks,%20Delilah&rft.date=2024-02-01&rft.volume=187&rft.issue=3&rft.spage=712&rft.epage=732.e38&rft.pages=712-732.e38&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2023.12.012&rft_dat=%3Cproquest_cross%3E2913084137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913084137&rft_id=info:pmid/38194967&rft_els_id=S0092867423013442&rfr_iscdi=true