Resonant ultrasound spectroscopy applications: Elastic moduli computation with x-ray computed tomography input for irregularly shaped objects

Resonant ultrasound spectroscopy is a technique that uses a combination of experimentally measured resonant frequencies and physics-based computation of these frequencies to determine the entire set of single crystal elastic moduli of the material. Computation of the resonances is most often accompl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2024-01, Vol.155 (1), p.241-251
Hauptverfasser: Adebisi, R. A., Lesthaeghe, T. J., Cherry, M. R., Sathish, S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 251
container_issue 1
container_start_page 241
container_title The Journal of the Acoustical Society of America
container_volume 155
creator Adebisi, R. A.
Lesthaeghe, T. J.
Cherry, M. R.
Sathish, S.
description Resonant ultrasound spectroscopy is a technique that uses a combination of experimentally measured resonant frequencies and physics-based computation of these frequencies to determine the entire set of single crystal elastic moduli of the material. Computation of the resonances is most often accomplished using the Rayleigh–Ritz energy minimization technique, and a basis function that requires sample with canonical geometry, such as a cylinder or a rectangular parallelepiped. Any deviation from canonical geometry can have a significant impact on the calculated resonance frequencies and the inverted elastic moduli. To overcome this limitation, this paper describes an approach that uses x-ray computed tomography data to generate accurate solid part model of components with complex geometry. The part model is then imported into an off-the-shelf finite element method (FEM) software to perform the forward problem. The FEM was combined with surrogate modeling for computation of resonance frequencies of both canonical and non-canonical samples, and ultimately, the inversion of elastic moduli.
doi_str_mv 10.1121/10.0024214
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2913082291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913082291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-1a01cfee7fb483e108c20ab8fc9d04e6ea9ff3493ba2773c21672df5e2f882ae3</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhq2qFSwLl_4A5GMFCvVHduNwQwhaJKRKVXuOJs6YNXJiYzsq-RH8Z7LsliOnVzPz6B3pIeQrZxecC_59TsZEKXj5iSz4SrBCrUT5mSwYY7wo6_X6kByl9DiPKyXrA3IoFa-rSsgFefmNyQ8wZDq6HCH5cehoCqhz9En7MFEIwVkN2fohXdIbBylbTXvfjc5S7fsw5rcj_Wfzhj4XEab9Gjuafe8fIoTNRO0wr6jxkdoY8WF0EN1E0wbCzPn2cX6ZjskXAy7hyT6X5O_tzZ_rn8X9rx9311f3hRZK5IID49ogVqYtlUTOlBYMWmV03bES1wi1MbKsZQuiqqQWfF2JzqxQGKUEoFySb7veEP3TiCk3vU0anYMB_ZgaUXPJlNjGkpztUD0LSRFNE6LtIU4NZ81W_zb3-mf4dN87tj127-h_3zNwvgOStjttH9W9Aseukcc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913082291</pqid></control><display><type>article</type><title>Resonant ultrasound spectroscopy applications: Elastic moduli computation with x-ray computed tomography input for irregularly shaped objects</title><source>AIP Journals Complete</source><source>Acoustical Society of America (AIP)</source><creator>Adebisi, R. A. ; Lesthaeghe, T. J. ; Cherry, M. R. ; Sathish, S.</creator><creatorcontrib>Adebisi, R. A. ; Lesthaeghe, T. J. ; Cherry, M. R. ; Sathish, S.</creatorcontrib><description>Resonant ultrasound spectroscopy is a technique that uses a combination of experimentally measured resonant frequencies and physics-based computation of these frequencies to determine the entire set of single crystal elastic moduli of the material. Computation of the resonances is most often accomplished using the Rayleigh–Ritz energy minimization technique, and a basis function that requires sample with canonical geometry, such as a cylinder or a rectangular parallelepiped. Any deviation from canonical geometry can have a significant impact on the calculated resonance frequencies and the inverted elastic moduli. To overcome this limitation, this paper describes an approach that uses x-ray computed tomography data to generate accurate solid part model of components with complex geometry. The part model is then imported into an off-the-shelf finite element method (FEM) software to perform the forward problem. The FEM was combined with surrogate modeling for computation of resonance frequencies of both canonical and non-canonical samples, and ultimately, the inversion of elastic moduli.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0024214</identifier><identifier>PMID: 38197723</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>United States</publisher><ispartof>The Journal of the Acoustical Society of America, 2024-01, Vol.155 (1), p.241-251</ispartof><rights>Acoustical Society of America</rights><rights>2024 Acoustical Society of America.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c282t-1a01cfee7fb483e108c20ab8fc9d04e6ea9ff3493ba2773c21672df5e2f882ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/10.0024214$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,780,784,794,1565,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38197723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adebisi, R. A.</creatorcontrib><creatorcontrib>Lesthaeghe, T. J.</creatorcontrib><creatorcontrib>Cherry, M. R.</creatorcontrib><creatorcontrib>Sathish, S.</creatorcontrib><title>Resonant ultrasound spectroscopy applications: Elastic moduli computation with x-ray computed tomography input for irregularly shaped objects</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>Resonant ultrasound spectroscopy is a technique that uses a combination of experimentally measured resonant frequencies and physics-based computation of these frequencies to determine the entire set of single crystal elastic moduli of the material. Computation of the resonances is most often accomplished using the Rayleigh–Ritz energy minimization technique, and a basis function that requires sample with canonical geometry, such as a cylinder or a rectangular parallelepiped. Any deviation from canonical geometry can have a significant impact on the calculated resonance frequencies and the inverted elastic moduli. To overcome this limitation, this paper describes an approach that uses x-ray computed tomography data to generate accurate solid part model of components with complex geometry. The part model is then imported into an off-the-shelf finite element method (FEM) software to perform the forward problem. The FEM was combined with surrogate modeling for computation of resonance frequencies of both canonical and non-canonical samples, and ultimately, the inversion of elastic moduli.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1P3DAQhq2qFSwLl_4A5GMFCvVHduNwQwhaJKRKVXuOJs6YNXJiYzsq-RH8Z7LsliOnVzPz6B3pIeQrZxecC_59TsZEKXj5iSz4SrBCrUT5mSwYY7wo6_X6kByl9DiPKyXrA3IoFa-rSsgFefmNyQ8wZDq6HCH5cehoCqhz9En7MFEIwVkN2fohXdIbBylbTXvfjc5S7fsw5rcj_Wfzhj4XEab9Gjuafe8fIoTNRO0wr6jxkdoY8WF0EN1E0wbCzPn2cX6ZjskXAy7hyT6X5O_tzZ_rn8X9rx9311f3hRZK5IID49ogVqYtlUTOlBYMWmV03bES1wi1MbKsZQuiqqQWfF2JzqxQGKUEoFySb7veEP3TiCk3vU0anYMB_ZgaUXPJlNjGkpztUD0LSRFNE6LtIU4NZ81W_zb3-mf4dN87tj127-h_3zNwvgOStjttH9W9Aseukcc</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Adebisi, R. A.</creator><creator>Lesthaeghe, T. J.</creator><creator>Cherry, M. R.</creator><creator>Sathish, S.</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202401</creationdate><title>Resonant ultrasound spectroscopy applications: Elastic moduli computation with x-ray computed tomography input for irregularly shaped objects</title><author>Adebisi, R. A. ; Lesthaeghe, T. J. ; Cherry, M. R. ; Sathish, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-1a01cfee7fb483e108c20ab8fc9d04e6ea9ff3493ba2773c21672df5e2f882ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adebisi, R. A.</creatorcontrib><creatorcontrib>Lesthaeghe, T. J.</creatorcontrib><creatorcontrib>Cherry, M. R.</creatorcontrib><creatorcontrib>Sathish, S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adebisi, R. A.</au><au>Lesthaeghe, T. J.</au><au>Cherry, M. R.</au><au>Sathish, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resonant ultrasound spectroscopy applications: Elastic moduli computation with x-ray computed tomography input for irregularly shaped objects</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2024-01</date><risdate>2024</risdate><volume>155</volume><issue>1</issue><spage>241</spage><epage>251</epage><pages>241-251</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>Resonant ultrasound spectroscopy is a technique that uses a combination of experimentally measured resonant frequencies and physics-based computation of these frequencies to determine the entire set of single crystal elastic moduli of the material. Computation of the resonances is most often accomplished using the Rayleigh–Ritz energy minimization technique, and a basis function that requires sample with canonical geometry, such as a cylinder or a rectangular parallelepiped. Any deviation from canonical geometry can have a significant impact on the calculated resonance frequencies and the inverted elastic moduli. To overcome this limitation, this paper describes an approach that uses x-ray computed tomography data to generate accurate solid part model of components with complex geometry. The part model is then imported into an off-the-shelf finite element method (FEM) software to perform the forward problem. The FEM was combined with surrogate modeling for computation of resonance frequencies of both canonical and non-canonical samples, and ultimately, the inversion of elastic moduli.</abstract><cop>United States</cop><pmid>38197723</pmid><doi>10.1121/10.0024214</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2024-01, Vol.155 (1), p.241-251
issn 0001-4966
1520-8524
language eng
recordid cdi_proquest_miscellaneous_2913082291
source AIP Journals Complete; Acoustical Society of America (AIP)
title Resonant ultrasound spectroscopy applications: Elastic moduli computation with x-ray computed tomography input for irregularly shaped objects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resonant%20ultrasound%20spectroscopy%20applications:%20Elastic%20moduli%20computation%20with%20x-ray%20computed%20tomography%20input%20for%20irregularly%20shaped%20objects&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Adebisi,%20R.%20A.&rft.date=2024-01&rft.volume=155&rft.issue=1&rft.spage=241&rft.epage=251&rft.pages=241-251&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/10.0024214&rft_dat=%3Cproquest_cross%3E2913082291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913082291&rft_id=info:pmid/38197723&rfr_iscdi=true