Suppressing Redox Reactions at the Perovskite‐Nickel Oxide Interface with Zinc Nitride to Improve the Performance of Perovskite Solar Cells

For p‐i‐n perovskite solar cells (PSCs), nickel oxide (NiOx) hole transport layers (HTLs) are the preferred interfacial layer due to their low cost, high mobility, high transmittance, and stability. However, the redox reaction between the Ni≥3+ and hydroxyl groups in the NiOx and perovskite layer le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-06, Vol.20 (24), p.e2311362-n/a
Hauptverfasser: Mann, Dilpreet Singh, Kwon, Sung‐Nam, Thakur, Sakshi, Patil, Pramila, Jeong, Kwang‐Un, Na, Seok‐In
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page e2311362
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Mann, Dilpreet Singh
Kwon, Sung‐Nam
Thakur, Sakshi
Patil, Pramila
Jeong, Kwang‐Un
Na, Seok‐In
description For p‐i‐n perovskite solar cells (PSCs), nickel oxide (NiOx) hole transport layers (HTLs) are the preferred interfacial layer due to their low cost, high mobility, high transmittance, and stability. However, the redox reaction between the Ni≥3+ and hydroxyl groups in the NiOx and perovskite layer leads to oxidized CH3NH3+ and reacts with PbI in the perovskite, resulting in a large number of non‐radiative recombination sites. Among various transition metals, an ultra‐thin zinc nitride (Zn3N2) layer on the NiOx surface is chosen to prevent these redox reactions and interfacial issues using a simple solution process at low temperatures. The redox reaction and non‐radiative recombination at the interface of the perovskite and NiOx reduce chemically by using interface modifier Zn3N2 to reduce hydroxyl group and defects on the surface of NiOx. A thin layer of Zn3N2 at the NiOx/perovskite interface results in a high Ni3+/Ni2+ ratio and a significant work function (WF), which inhibits the redox reaction and provides a highly aligned energy level with perovskite crystal and rigorous trap‐passivation ability. Consequently, Zn3N2‐modified NiOx‐based PSCs achieve a champion PCE of 21.61%, over the NiOx‐based PSCs. After Zn3N2 modification, the PSC can improve stability under several conditions. In this work, an ultra‐thin zinc nitride (Zn3N2) layer is introduced on the NiOx surface is chosen to prevent these redox reactions and interfacial issues using a simple solution process at low temperatures. The redox reaction and non‐radiative recombination at the interface of the perovskite and NiOx reduce chemically by using interface modifier Zn3N2 to reduce hydroxyl group and defects on the surface of NiOx. A thin layer of Zn3N2 at the NiOx/perovskite interface results in a high Ni3+/Ni2+ ratio and a significant work function (WF), which inhibits the redox reaction and provides a highly aligned energy level with perovskite crystal and rigorous trap‐passivation ability. Consequently, Zn3N2‐modified NiOx‐based PSCs achieve a champion PCE of 21.61%, over the NiOx‐based PSCs. After Zn3N2 modification, the PSC can improve stability under several conditions.
doi_str_mv 10.1002/smll.202311362
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2912526614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066748251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3732-854df5207094f7ee774cf9e319d3ccc1c8c34fdce01456f938aaee3d7e5b52693</originalsourceid><addsrcrecordid>eNqFkctOGzEUhi1ExSWwZYkssekmqS9z8xJFLURKQ9W0GzaW8RyDYWYcbE8DO16gUp-xT1JHgYC6YXN8JH_n0y_9CB1RMqKEsE-hbZoRI4xTygu2hfZoQfmwqJjY3uyU7KL9EG4J4ZRl5Q7a5RUVjBCyh37P-8XCQwi2u8bfoXYPaSodresCVhHHG8DfwLtf4c5G-Pv0Z2b1HTT44sHWgCddBG-UBry08QZf2k7jmY1-9RcdnrSLdAkvEuN8q7oEO_PGieeuUR6PoWnCAfpgVBPg8PkdoJ9fPv8Ynw-nF2eT8el0qHnJ2bDKs9rkjJREZKYEKMtMGwGcipprramuNM9MrYHQLC-M4JVSALwuIb_KWSH4AH1ce1O--x5ClK0NOiVQHbg-SCYoS2BBs4Se_Ifeut53KZ3kpCjKrGI5TdRoTWnvQvBg5MLbVvlHSYlcFSVXRclNUeng-FnbX7VQb_CXZhIg1sDSNvD4jk7Ov06nr_J_lQuiNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066748251</pqid></control><display><type>article</type><title>Suppressing Redox Reactions at the Perovskite‐Nickel Oxide Interface with Zinc Nitride to Improve the Performance of Perovskite Solar Cells</title><source>Wiley Online Library All Journals</source><creator>Mann, Dilpreet Singh ; Kwon, Sung‐Nam ; Thakur, Sakshi ; Patil, Pramila ; Jeong, Kwang‐Un ; Na, Seok‐In</creator><creatorcontrib>Mann, Dilpreet Singh ; Kwon, Sung‐Nam ; Thakur, Sakshi ; Patil, Pramila ; Jeong, Kwang‐Un ; Na, Seok‐In</creatorcontrib><description>For p‐i‐n perovskite solar cells (PSCs), nickel oxide (NiOx) hole transport layers (HTLs) are the preferred interfacial layer due to their low cost, high mobility, high transmittance, and stability. However, the redox reaction between the Ni≥3+ and hydroxyl groups in the NiOx and perovskite layer leads to oxidized CH3NH3+ and reacts with PbI in the perovskite, resulting in a large number of non‐radiative recombination sites. Among various transition metals, an ultra‐thin zinc nitride (Zn3N2) layer on the NiOx surface is chosen to prevent these redox reactions and interfacial issues using a simple solution process at low temperatures. The redox reaction and non‐radiative recombination at the interface of the perovskite and NiOx reduce chemically by using interface modifier Zn3N2 to reduce hydroxyl group and defects on the surface of NiOx. A thin layer of Zn3N2 at the NiOx/perovskite interface results in a high Ni3+/Ni2+ ratio and a significant work function (WF), which inhibits the redox reaction and provides a highly aligned energy level with perovskite crystal and rigorous trap‐passivation ability. Consequently, Zn3N2‐modified NiOx‐based PSCs achieve a champion PCE of 21.61%, over the NiOx‐based PSCs. After Zn3N2 modification, the PSC can improve stability under several conditions. In this work, an ultra‐thin zinc nitride (Zn3N2) layer is introduced on the NiOx surface is chosen to prevent these redox reactions and interfacial issues using a simple solution process at low temperatures. The redox reaction and non‐radiative recombination at the interface of the perovskite and NiOx reduce chemically by using interface modifier Zn3N2 to reduce hydroxyl group and defects on the surface of NiOx. A thin layer of Zn3N2 at the NiOx/perovskite interface results in a high Ni3+/Ni2+ ratio and a significant work function (WF), which inhibits the redox reaction and provides a highly aligned energy level with perovskite crystal and rigorous trap‐passivation ability. Consequently, Zn3N2‐modified NiOx‐based PSCs achieve a champion PCE of 21.61%, over the NiOx‐based PSCs. After Zn3N2 modification, the PSC can improve stability under several conditions.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202311362</identifier><identifier>PMID: 38192000</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>charge carrier dynamic ; Crystal defects ; Energy levels ; Hydroxyl groups ; Low temperature ; Nickel oxides ; Perovskites ; Photovoltaic cells ; Radiative recombination ; redox reaction ; Redox reactions ; Solar cells ; Stability ; surface defects ; transition metal nitride ; Transition metals ; Work functions ; Zinc nitride</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-06, Vol.20 (24), p.e2311362-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3732-854df5207094f7ee774cf9e319d3ccc1c8c34fdce01456f938aaee3d7e5b52693</citedby><cites>FETCH-LOGICAL-c3732-854df5207094f7ee774cf9e319d3ccc1c8c34fdce01456f938aaee3d7e5b52693</cites><orcidid>0000-0001-8020-6110</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202311362$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202311362$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38192000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mann, Dilpreet Singh</creatorcontrib><creatorcontrib>Kwon, Sung‐Nam</creatorcontrib><creatorcontrib>Thakur, Sakshi</creatorcontrib><creatorcontrib>Patil, Pramila</creatorcontrib><creatorcontrib>Jeong, Kwang‐Un</creatorcontrib><creatorcontrib>Na, Seok‐In</creatorcontrib><title>Suppressing Redox Reactions at the Perovskite‐Nickel Oxide Interface with Zinc Nitride to Improve the Performance of Perovskite Solar Cells</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>For p‐i‐n perovskite solar cells (PSCs), nickel oxide (NiOx) hole transport layers (HTLs) are the preferred interfacial layer due to their low cost, high mobility, high transmittance, and stability. However, the redox reaction between the Ni≥3+ and hydroxyl groups in the NiOx and perovskite layer leads to oxidized CH3NH3+ and reacts with PbI in the perovskite, resulting in a large number of non‐radiative recombination sites. Among various transition metals, an ultra‐thin zinc nitride (Zn3N2) layer on the NiOx surface is chosen to prevent these redox reactions and interfacial issues using a simple solution process at low temperatures. The redox reaction and non‐radiative recombination at the interface of the perovskite and NiOx reduce chemically by using interface modifier Zn3N2 to reduce hydroxyl group and defects on the surface of NiOx. A thin layer of Zn3N2 at the NiOx/perovskite interface results in a high Ni3+/Ni2+ ratio and a significant work function (WF), which inhibits the redox reaction and provides a highly aligned energy level with perovskite crystal and rigorous trap‐passivation ability. Consequently, Zn3N2‐modified NiOx‐based PSCs achieve a champion PCE of 21.61%, over the NiOx‐based PSCs. After Zn3N2 modification, the PSC can improve stability under several conditions. In this work, an ultra‐thin zinc nitride (Zn3N2) layer is introduced on the NiOx surface is chosen to prevent these redox reactions and interfacial issues using a simple solution process at low temperatures. The redox reaction and non‐radiative recombination at the interface of the perovskite and NiOx reduce chemically by using interface modifier Zn3N2 to reduce hydroxyl group and defects on the surface of NiOx. A thin layer of Zn3N2 at the NiOx/perovskite interface results in a high Ni3+/Ni2+ ratio and a significant work function (WF), which inhibits the redox reaction and provides a highly aligned energy level with perovskite crystal and rigorous trap‐passivation ability. Consequently, Zn3N2‐modified NiOx‐based PSCs achieve a champion PCE of 21.61%, over the NiOx‐based PSCs. After Zn3N2 modification, the PSC can improve stability under several conditions.</description><subject>charge carrier dynamic</subject><subject>Crystal defects</subject><subject>Energy levels</subject><subject>Hydroxyl groups</subject><subject>Low temperature</subject><subject>Nickel oxides</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Radiative recombination</subject><subject>redox reaction</subject><subject>Redox reactions</subject><subject>Solar cells</subject><subject>Stability</subject><subject>surface defects</subject><subject>transition metal nitride</subject><subject>Transition metals</subject><subject>Work functions</subject><subject>Zinc nitride</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkctOGzEUhi1ExSWwZYkssekmqS9z8xJFLURKQ9W0GzaW8RyDYWYcbE8DO16gUp-xT1JHgYC6YXN8JH_n0y_9CB1RMqKEsE-hbZoRI4xTygu2hfZoQfmwqJjY3uyU7KL9EG4J4ZRl5Q7a5RUVjBCyh37P-8XCQwi2u8bfoXYPaSodresCVhHHG8DfwLtf4c5G-Pv0Z2b1HTT44sHWgCddBG-UBry08QZf2k7jmY1-9RcdnrSLdAkvEuN8q7oEO_PGieeuUR6PoWnCAfpgVBPg8PkdoJ9fPv8Ynw-nF2eT8el0qHnJ2bDKs9rkjJREZKYEKMtMGwGcipprramuNM9MrYHQLC-M4JVSALwuIb_KWSH4AH1ce1O--x5ClK0NOiVQHbg-SCYoS2BBs4Se_Ifeut53KZ3kpCjKrGI5TdRoTWnvQvBg5MLbVvlHSYlcFSVXRclNUeng-FnbX7VQb_CXZhIg1sDSNvD4jk7Ov06nr_J_lQuiNg</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Mann, Dilpreet Singh</creator><creator>Kwon, Sung‐Nam</creator><creator>Thakur, Sakshi</creator><creator>Patil, Pramila</creator><creator>Jeong, Kwang‐Un</creator><creator>Na, Seok‐In</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8020-6110</orcidid></search><sort><creationdate>20240601</creationdate><title>Suppressing Redox Reactions at the Perovskite‐Nickel Oxide Interface with Zinc Nitride to Improve the Performance of Perovskite Solar Cells</title><author>Mann, Dilpreet Singh ; Kwon, Sung‐Nam ; Thakur, Sakshi ; Patil, Pramila ; Jeong, Kwang‐Un ; Na, Seok‐In</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3732-854df5207094f7ee774cf9e319d3ccc1c8c34fdce01456f938aaee3d7e5b52693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>charge carrier dynamic</topic><topic>Crystal defects</topic><topic>Energy levels</topic><topic>Hydroxyl groups</topic><topic>Low temperature</topic><topic>Nickel oxides</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Radiative recombination</topic><topic>redox reaction</topic><topic>Redox reactions</topic><topic>Solar cells</topic><topic>Stability</topic><topic>surface defects</topic><topic>transition metal nitride</topic><topic>Transition metals</topic><topic>Work functions</topic><topic>Zinc nitride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mann, Dilpreet Singh</creatorcontrib><creatorcontrib>Kwon, Sung‐Nam</creatorcontrib><creatorcontrib>Thakur, Sakshi</creatorcontrib><creatorcontrib>Patil, Pramila</creatorcontrib><creatorcontrib>Jeong, Kwang‐Un</creatorcontrib><creatorcontrib>Na, Seok‐In</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mann, Dilpreet Singh</au><au>Kwon, Sung‐Nam</au><au>Thakur, Sakshi</au><au>Patil, Pramila</au><au>Jeong, Kwang‐Un</au><au>Na, Seok‐In</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppressing Redox Reactions at the Perovskite‐Nickel Oxide Interface with Zinc Nitride to Improve the Performance of Perovskite Solar Cells</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>20</volume><issue>24</issue><spage>e2311362</spage><epage>n/a</epage><pages>e2311362-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>For p‐i‐n perovskite solar cells (PSCs), nickel oxide (NiOx) hole transport layers (HTLs) are the preferred interfacial layer due to their low cost, high mobility, high transmittance, and stability. However, the redox reaction between the Ni≥3+ and hydroxyl groups in the NiOx and perovskite layer leads to oxidized CH3NH3+ and reacts with PbI in the perovskite, resulting in a large number of non‐radiative recombination sites. Among various transition metals, an ultra‐thin zinc nitride (Zn3N2) layer on the NiOx surface is chosen to prevent these redox reactions and interfacial issues using a simple solution process at low temperatures. The redox reaction and non‐radiative recombination at the interface of the perovskite and NiOx reduce chemically by using interface modifier Zn3N2 to reduce hydroxyl group and defects on the surface of NiOx. A thin layer of Zn3N2 at the NiOx/perovskite interface results in a high Ni3+/Ni2+ ratio and a significant work function (WF), which inhibits the redox reaction and provides a highly aligned energy level with perovskite crystal and rigorous trap‐passivation ability. Consequently, Zn3N2‐modified NiOx‐based PSCs achieve a champion PCE of 21.61%, over the NiOx‐based PSCs. After Zn3N2 modification, the PSC can improve stability under several conditions. In this work, an ultra‐thin zinc nitride (Zn3N2) layer is introduced on the NiOx surface is chosen to prevent these redox reactions and interfacial issues using a simple solution process at low temperatures. The redox reaction and non‐radiative recombination at the interface of the perovskite and NiOx reduce chemically by using interface modifier Zn3N2 to reduce hydroxyl group and defects on the surface of NiOx. A thin layer of Zn3N2 at the NiOx/perovskite interface results in a high Ni3+/Ni2+ ratio and a significant work function (WF), which inhibits the redox reaction and provides a highly aligned energy level with perovskite crystal and rigorous trap‐passivation ability. Consequently, Zn3N2‐modified NiOx‐based PSCs achieve a champion PCE of 21.61%, over the NiOx‐based PSCs. After Zn3N2 modification, the PSC can improve stability under several conditions.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38192000</pmid><doi>10.1002/smll.202311362</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8020-6110</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-06, Vol.20 (24), p.e2311362-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2912526614
source Wiley Online Library All Journals
subjects charge carrier dynamic
Crystal defects
Energy levels
Hydroxyl groups
Low temperature
Nickel oxides
Perovskites
Photovoltaic cells
Radiative recombination
redox reaction
Redox reactions
Solar cells
Stability
surface defects
transition metal nitride
Transition metals
Work functions
Zinc nitride
title Suppressing Redox Reactions at the Perovskite‐Nickel Oxide Interface with Zinc Nitride to Improve the Performance of Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A57%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppressing%20Redox%20Reactions%20at%20the%20Perovskite%E2%80%90Nickel%20Oxide%20Interface%20with%20Zinc%20Nitride%20to%20Improve%20the%20Performance%20of%20Perovskite%20Solar%20Cells&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Mann,%20Dilpreet%20Singh&rft.date=2024-06-01&rft.volume=20&rft.issue=24&rft.spage=e2311362&rft.epage=n/a&rft.pages=e2311362-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202311362&rft_dat=%3Cproquest_cross%3E3066748251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066748251&rft_id=info:pmid/38192000&rfr_iscdi=true