Compact Goal Representation Learning via Information Bottleneck in Goal-Conditioned Reinforcement Learning

We propose an Information bottleneck (IB) for Goal representation learning (InfoGoal), a self-supervised method for generalizable goal-conditioned reinforcement learning (RL). Goal-conditioned RL learns a policy from reward signals to predict actions for reaching desired goals. However, the policy w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2024-01, Vol.PP, p.1-14
Hauptverfasser: Zou, Qiming, Suzuki, Einoshin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!