A bi-criteria model for the inventory aggregation problem under risk pooling

Inventory aggregation, also called Risk Pooling, is one of the most efficient ways to reduce the level of safety stocks thereby reducing inventory across the supply chain. Determining the best level of aggregation is a difficult problem and needs extensive study of all the possible scenarios that ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & industrial engineering 2006-11, Vol.51 (3), p.482-501
Hauptverfasser: Gaur, Saurabh, Ravindran, A. Ravi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 501
container_issue 3
container_start_page 482
container_title Computers & industrial engineering
container_volume 51
creator Gaur, Saurabh
Ravindran, A. Ravi
description Inventory aggregation, also called Risk Pooling, is one of the most efficient ways to reduce the level of safety stocks thereby reducing inventory across the supply chain. Determining the best level of aggregation is a difficult problem and needs extensive study of all the possible scenarios that can affect this decision. Minimizing costs in a supply chain is no longer the sole priority of businesses. Maintaining a high level of responsiveness is also considered equally important. The conflicting nature of these two criteria makes the solution of the problem difficult. In this paper, we develop a bi-criteria nonlinear stochastic integer programming model to determine the best supply chain distribution network to meet customer demands, where minimizing costs while maintaining high levels of responsiveness is important. We develop a two-stage optimization algorithm to solve this problem.
doi_str_mv 10.1016/j.cie.2006.08.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29123691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360835206001082</els_id><sourcerecordid>29123691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-6187e3145f2e83ad6fedef4c6a299ca25dee2694d139e3569014958b07ba47903</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwA9gsBraEZzt2YzFVFV9SJRaYLdd5KQ5pXOy0Ev8eV2ViYHrLuVf3HUKuGZQMmLrrSuex5ACqhLoE0CdkwuqZLkBKOCUTEAqKWkh-Ti5S6gCgkppNyHJOV75w0Y8YvaWb0GBP2xDp-IHUD3scxhC_qV2vI67t6MNAtzGsetzQ3dBgpNGnT7oNoffD-pKctbZPePV7p-T98eFt8VwsX59eFvNl4YSUY6HyMBSski3HWthGtdhgWzlludbOctkgcqWrhgmNQioNrNKyXsFsZauZBjElt8fePOVrh2k0G58c9r0dMOyS4ZpxoTTL4M0fsAu7OORthjMxqzJ3gNgRcjGkFLE12-g3Nn4bBuYg13QmyzUHuQZqk-XmzP0xg_nNvcdoUkYGh42P6EbTBP9P-gdU6YEp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213749121</pqid></control><display><type>article</type><title>A bi-criteria model for the inventory aggregation problem under risk pooling</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Gaur, Saurabh ; Ravindran, A. Ravi</creator><creatorcontrib>Gaur, Saurabh ; Ravindran, A. Ravi</creatorcontrib><description>Inventory aggregation, also called Risk Pooling, is one of the most efficient ways to reduce the level of safety stocks thereby reducing inventory across the supply chain. Determining the best level of aggregation is a difficult problem and needs extensive study of all the possible scenarios that can affect this decision. Minimizing costs in a supply chain is no longer the sole priority of businesses. Maintaining a high level of responsiveness is also considered equally important. The conflicting nature of these two criteria makes the solution of the problem difficult. In this paper, we develop a bi-criteria nonlinear stochastic integer programming model to determine the best supply chain distribution network to meet customer demands, where minimizing costs while maintaining high levels of responsiveness is important. We develop a two-stage optimization algorithm to solve this problem.</description><identifier>ISSN: 0360-8352</identifier><identifier>EISSN: 1879-0550</identifier><identifier>DOI: 10.1016/j.cie.2006.08.009</identifier><identifier>CODEN: CINDDL</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Integer programming ; Inventory aggregation ; Inventory management ; Multiple criteria optimization ; Optimization ; Risk pooling ; Stochastic models ; Studies ; Supply chain design ; Supply chains</subject><ispartof>Computers &amp; industrial engineering, 2006-11, Vol.51 (3), p.482-501</ispartof><rights>2006 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Nov 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-6187e3145f2e83ad6fedef4c6a299ca25dee2694d139e3569014958b07ba47903</citedby><cites>FETCH-LOGICAL-c355t-6187e3145f2e83ad6fedef4c6a299ca25dee2694d139e3569014958b07ba47903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cie.2006.08.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Gaur, Saurabh</creatorcontrib><creatorcontrib>Ravindran, A. Ravi</creatorcontrib><title>A bi-criteria model for the inventory aggregation problem under risk pooling</title><title>Computers &amp; industrial engineering</title><description>Inventory aggregation, also called Risk Pooling, is one of the most efficient ways to reduce the level of safety stocks thereby reducing inventory across the supply chain. Determining the best level of aggregation is a difficult problem and needs extensive study of all the possible scenarios that can affect this decision. Minimizing costs in a supply chain is no longer the sole priority of businesses. Maintaining a high level of responsiveness is also considered equally important. The conflicting nature of these two criteria makes the solution of the problem difficult. In this paper, we develop a bi-criteria nonlinear stochastic integer programming model to determine the best supply chain distribution network to meet customer demands, where minimizing costs while maintaining high levels of responsiveness is important. We develop a two-stage optimization algorithm to solve this problem.</description><subject>Integer programming</subject><subject>Inventory aggregation</subject><subject>Inventory management</subject><subject>Multiple criteria optimization</subject><subject>Optimization</subject><subject>Risk pooling</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Supply chain design</subject><subject>Supply chains</subject><issn>0360-8352</issn><issn>1879-0550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwA9gsBraEZzt2YzFVFV9SJRaYLdd5KQ5pXOy0Ev8eV2ViYHrLuVf3HUKuGZQMmLrrSuex5ACqhLoE0CdkwuqZLkBKOCUTEAqKWkh-Ti5S6gCgkppNyHJOV75w0Y8YvaWb0GBP2xDp-IHUD3scxhC_qV2vI67t6MNAtzGsetzQ3dBgpNGnT7oNoffD-pKctbZPePV7p-T98eFt8VwsX59eFvNl4YSUY6HyMBSski3HWthGtdhgWzlludbOctkgcqWrhgmNQioNrNKyXsFsZauZBjElt8fePOVrh2k0G58c9r0dMOyS4ZpxoTTL4M0fsAu7OORthjMxqzJ3gNgRcjGkFLE12-g3Nn4bBuYg13QmyzUHuQZqk-XmzP0xg_nNvcdoUkYGh42P6EbTBP9P-gdU6YEp</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>Gaur, Saurabh</creator><creator>Ravindran, A. Ravi</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20061101</creationdate><title>A bi-criteria model for the inventory aggregation problem under risk pooling</title><author>Gaur, Saurabh ; Ravindran, A. Ravi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-6187e3145f2e83ad6fedef4c6a299ca25dee2694d139e3569014958b07ba47903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Integer programming</topic><topic>Inventory aggregation</topic><topic>Inventory management</topic><topic>Multiple criteria optimization</topic><topic>Optimization</topic><topic>Risk pooling</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Supply chain design</topic><topic>Supply chains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaur, Saurabh</creatorcontrib><creatorcontrib>Ravindran, A. Ravi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; industrial engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaur, Saurabh</au><au>Ravindran, A. Ravi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bi-criteria model for the inventory aggregation problem under risk pooling</atitle><jtitle>Computers &amp; industrial engineering</jtitle><date>2006-11-01</date><risdate>2006</risdate><volume>51</volume><issue>3</issue><spage>482</spage><epage>501</epage><pages>482-501</pages><issn>0360-8352</issn><eissn>1879-0550</eissn><coden>CINDDL</coden><abstract>Inventory aggregation, also called Risk Pooling, is one of the most efficient ways to reduce the level of safety stocks thereby reducing inventory across the supply chain. Determining the best level of aggregation is a difficult problem and needs extensive study of all the possible scenarios that can affect this decision. Minimizing costs in a supply chain is no longer the sole priority of businesses. Maintaining a high level of responsiveness is also considered equally important. The conflicting nature of these two criteria makes the solution of the problem difficult. In this paper, we develop a bi-criteria nonlinear stochastic integer programming model to determine the best supply chain distribution network to meet customer demands, where minimizing costs while maintaining high levels of responsiveness is important. We develop a two-stage optimization algorithm to solve this problem.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cie.2006.08.009</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-8352
ispartof Computers & industrial engineering, 2006-11, Vol.51 (3), p.482-501
issn 0360-8352
1879-0550
language eng
recordid cdi_proquest_miscellaneous_29123691
source ScienceDirect Journals (5 years ago - present)
subjects Integer programming
Inventory aggregation
Inventory management
Multiple criteria optimization
Optimization
Risk pooling
Stochastic models
Studies
Supply chain design
Supply chains
title A bi-criteria model for the inventory aggregation problem under risk pooling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A52%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bi-criteria%20model%20for%20the%20inventory%20aggregation%20problem%20under%20risk%20pooling&rft.jtitle=Computers%20&%20industrial%20engineering&rft.au=Gaur,%20Saurabh&rft.date=2006-11-01&rft.volume=51&rft.issue=3&rft.spage=482&rft.epage=501&rft.pages=482-501&rft.issn=0360-8352&rft.eissn=1879-0550&rft.coden=CINDDL&rft_id=info:doi/10.1016/j.cie.2006.08.009&rft_dat=%3Cproquest_cross%3E29123691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213749121&rft_id=info:pmid/&rft_els_id=S0360835206001082&rfr_iscdi=true