Ice formation around a finned-tube heat exchanger for cold thermal energy storage

This paper addresses a numerical and experimental investigation of a cold thermal energy storage system involving phase-change process dominated by heat conduction. The problem involves a fluid flowing inside a horizontal finned tube surrounded by a phase-change material (PCM). The objective of this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of thermal sciences 2006-04, Vol.45 (4), p.405-418
Hauptverfasser: Kayansayan, N., Ali Acar, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 418
container_issue 4
container_start_page 405
container_title International journal of thermal sciences
container_volume 45
creator Kayansayan, N.
Ali Acar, M.
description This paper addresses a numerical and experimental investigation of a cold thermal energy storage system involving phase-change process dominated by heat conduction. The problem involves a fluid flowing inside a horizontal finned tube surrounded by a phase-change material (PCM). The objective of this paper is to predict the temperature distribution, the phase front distribution along the tube and to analyze the effect of fin density and size on the dynamic performance of the system. The problem is modeled as axisymmetric and two-dimensional, and a control volume computer code has been developed for the solution of the corresponding mathematical model. In the experimental arrangement of the tube configuration, two different fin diameters; D fn = 2.7 and 3.2 are considered and the fin density at each fin diameter is varied in the range of N fn = 14 – 31  fins ⋅ m −1 . For a particular geometry then the heat transfer fluid inlet temperature assumes values between −10 °C and −20 °C, and the flow Peclet number is varied in the range from 14 350 to 200 900 accordingly. Comparison between the numerical predictions and the experimental data shows good agreement, even though some effects that are produced by heat transfer to the environment especially at high flow rates neglected in the model but unavoidable in the experiments. Finally, time-wise variation of energy stored by the system is evaluated through instant images of solidification fronts and the combined effect of fin parameters and the flow rate on energy storage is discussed.
doi_str_mv 10.1016/j.ijthermalsci.2005.05.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29122968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1290072905001584</els_id><sourcerecordid>29122968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-a8ddcb4f2020083509ffef3beaed31f3da2ba1d22db0e7648bbfe8f18c8618f63</originalsourceid><addsrcrecordid>eNqNkE9LAzEQxRdRsFa_QxD0tmuS7e4m3qT-hYIIeg7ZZNJm2SY12Yr99mZpQY_CwMzhN-_NvCy7JLggmNQ3XWG7YQVhLfuobEExroqxMD_KJqRpWD4jdX2cZspxjhvKT7OzGDuMccMxn2RvLwqQ8UlgsN4hGfzWaSSRsc6BzodtC2gFckDwrVbSLSGMNFK-1-hgjMBBWO5QHHyQSzjPTky6Bi4OfZp9PD68z5_zxevTy_xukauSVUMumdaqnRmK09GsrDA3BkzZggRdElNqSVtJNKW6xdDUM9a2BpghTLGaMFOX0-x6r7sJ_nMLcRBrGxX0vXTgt1FQTijlNUvg7R5UwccYwIhNsGsZdoJgMaYoOvE3RTGmKMbCPC1fHVxkVLI3QTpl469CU5GmrJvE3e85SC9_WQgiKYFToG0ANQjt7X_sfgAyC5Ec</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29122968</pqid></control><display><type>article</type><title>Ice formation around a finned-tube heat exchanger for cold thermal energy storage</title><source>Elsevier ScienceDirect Journals</source><creator>Kayansayan, N. ; Ali Acar, M.</creator><creatorcontrib>Kayansayan, N. ; Ali Acar, M.</creatorcontrib><description>This paper addresses a numerical and experimental investigation of a cold thermal energy storage system involving phase-change process dominated by heat conduction. The problem involves a fluid flowing inside a horizontal finned tube surrounded by a phase-change material (PCM). The objective of this paper is to predict the temperature distribution, the phase front distribution along the tube and to analyze the effect of fin density and size on the dynamic performance of the system. The problem is modeled as axisymmetric and two-dimensional, and a control volume computer code has been developed for the solution of the corresponding mathematical model. In the experimental arrangement of the tube configuration, two different fin diameters; D fn = 2.7 and 3.2 are considered and the fin density at each fin diameter is varied in the range of N fn = 14 – 31  fins ⋅ m −1 . For a particular geometry then the heat transfer fluid inlet temperature assumes values between −10 °C and −20 °C, and the flow Peclet number is varied in the range from 14 350 to 200 900 accordingly. Comparison between the numerical predictions and the experimental data shows good agreement, even though some effects that are produced by heat transfer to the environment especially at high flow rates neglected in the model but unavoidable in the experiments. Finally, time-wise variation of energy stored by the system is evaluated through instant images of solidification fronts and the combined effect of fin parameters and the flow rate on energy storage is discussed.</description><identifier>ISSN: 1290-0729</identifier><identifier>EISSN: 1778-4166</identifier><identifier>DOI: 10.1016/j.ijthermalsci.2005.05.009</identifier><language>eng</language><publisher>Paris: Elsevier Masson SAS</publisher><subject>Applied sciences ; Cold thermal energy ; Devices using thermal energy ; Energy ; Energy storage ; Energy. Thermal use of fuels ; Exact sciences and technology ; Experimental ; Finite-volume ; Finned tube ; Heat exchangers (included heat transformers, condensers, cooling towers) ; Heat transfer ; Ice formation ; Measurement ; Numerical ; Phase change ; Solidification ; Transport and storage of energy</subject><ispartof>International journal of thermal sciences, 2006-04, Vol.45 (4), p.405-418</ispartof><rights>2005 Elsevier SAS</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-a8ddcb4f2020083509ffef3beaed31f3da2ba1d22db0e7648bbfe8f18c8618f63</citedby><cites>FETCH-LOGICAL-c385t-a8ddcb4f2020083509ffef3beaed31f3da2ba1d22db0e7648bbfe8f18c8618f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1290072905001584$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17517367$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kayansayan, N.</creatorcontrib><creatorcontrib>Ali Acar, M.</creatorcontrib><title>Ice formation around a finned-tube heat exchanger for cold thermal energy storage</title><title>International journal of thermal sciences</title><description>This paper addresses a numerical and experimental investigation of a cold thermal energy storage system involving phase-change process dominated by heat conduction. The problem involves a fluid flowing inside a horizontal finned tube surrounded by a phase-change material (PCM). The objective of this paper is to predict the temperature distribution, the phase front distribution along the tube and to analyze the effect of fin density and size on the dynamic performance of the system. The problem is modeled as axisymmetric and two-dimensional, and a control volume computer code has been developed for the solution of the corresponding mathematical model. In the experimental arrangement of the tube configuration, two different fin diameters; D fn = 2.7 and 3.2 are considered and the fin density at each fin diameter is varied in the range of N fn = 14 – 31  fins ⋅ m −1 . For a particular geometry then the heat transfer fluid inlet temperature assumes values between −10 °C and −20 °C, and the flow Peclet number is varied in the range from 14 350 to 200 900 accordingly. Comparison between the numerical predictions and the experimental data shows good agreement, even though some effects that are produced by heat transfer to the environment especially at high flow rates neglected in the model but unavoidable in the experiments. Finally, time-wise variation of energy stored by the system is evaluated through instant images of solidification fronts and the combined effect of fin parameters and the flow rate on energy storage is discussed.</description><subject>Applied sciences</subject><subject>Cold thermal energy</subject><subject>Devices using thermal energy</subject><subject>Energy</subject><subject>Energy storage</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Experimental</subject><subject>Finite-volume</subject><subject>Finned tube</subject><subject>Heat exchangers (included heat transformers, condensers, cooling towers)</subject><subject>Heat transfer</subject><subject>Ice formation</subject><subject>Measurement</subject><subject>Numerical</subject><subject>Phase change</subject><subject>Solidification</subject><subject>Transport and storage of energy</subject><issn>1290-0729</issn><issn>1778-4166</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkE9LAzEQxRdRsFa_QxD0tmuS7e4m3qT-hYIIeg7ZZNJm2SY12Yr99mZpQY_CwMzhN-_NvCy7JLggmNQ3XWG7YQVhLfuobEExroqxMD_KJqRpWD4jdX2cZspxjhvKT7OzGDuMccMxn2RvLwqQ8UlgsN4hGfzWaSSRsc6BzodtC2gFckDwrVbSLSGMNFK-1-hgjMBBWO5QHHyQSzjPTky6Bi4OfZp9PD68z5_zxevTy_xukauSVUMumdaqnRmK09GsrDA3BkzZggRdElNqSVtJNKW6xdDUM9a2BpghTLGaMFOX0-x6r7sJ_nMLcRBrGxX0vXTgt1FQTijlNUvg7R5UwccYwIhNsGsZdoJgMaYoOvE3RTGmKMbCPC1fHVxkVLI3QTpl469CU5GmrJvE3e85SC9_WQgiKYFToG0ANQjt7X_sfgAyC5Ec</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Kayansayan, N.</creator><creator>Ali Acar, M.</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20060401</creationdate><title>Ice formation around a finned-tube heat exchanger for cold thermal energy storage</title><author>Kayansayan, N. ; Ali Acar, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-a8ddcb4f2020083509ffef3beaed31f3da2ba1d22db0e7648bbfe8f18c8618f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Cold thermal energy</topic><topic>Devices using thermal energy</topic><topic>Energy</topic><topic>Energy storage</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Experimental</topic><topic>Finite-volume</topic><topic>Finned tube</topic><topic>Heat exchangers (included heat transformers, condensers, cooling towers)</topic><topic>Heat transfer</topic><topic>Ice formation</topic><topic>Measurement</topic><topic>Numerical</topic><topic>Phase change</topic><topic>Solidification</topic><topic>Transport and storage of energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kayansayan, N.</creatorcontrib><creatorcontrib>Ali Acar, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of thermal sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kayansayan, N.</au><au>Ali Acar, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ice formation around a finned-tube heat exchanger for cold thermal energy storage</atitle><jtitle>International journal of thermal sciences</jtitle><date>2006-04-01</date><risdate>2006</risdate><volume>45</volume><issue>4</issue><spage>405</spage><epage>418</epage><pages>405-418</pages><issn>1290-0729</issn><eissn>1778-4166</eissn><abstract>This paper addresses a numerical and experimental investigation of a cold thermal energy storage system involving phase-change process dominated by heat conduction. The problem involves a fluid flowing inside a horizontal finned tube surrounded by a phase-change material (PCM). The objective of this paper is to predict the temperature distribution, the phase front distribution along the tube and to analyze the effect of fin density and size on the dynamic performance of the system. The problem is modeled as axisymmetric and two-dimensional, and a control volume computer code has been developed for the solution of the corresponding mathematical model. In the experimental arrangement of the tube configuration, two different fin diameters; D fn = 2.7 and 3.2 are considered and the fin density at each fin diameter is varied in the range of N fn = 14 – 31  fins ⋅ m −1 . For a particular geometry then the heat transfer fluid inlet temperature assumes values between −10 °C and −20 °C, and the flow Peclet number is varied in the range from 14 350 to 200 900 accordingly. Comparison between the numerical predictions and the experimental data shows good agreement, even though some effects that are produced by heat transfer to the environment especially at high flow rates neglected in the model but unavoidable in the experiments. Finally, time-wise variation of energy stored by the system is evaluated through instant images of solidification fronts and the combined effect of fin parameters and the flow rate on energy storage is discussed.</abstract><cop>Paris</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.ijthermalsci.2005.05.009</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1290-0729
ispartof International journal of thermal sciences, 2006-04, Vol.45 (4), p.405-418
issn 1290-0729
1778-4166
language eng
recordid cdi_proquest_miscellaneous_29122968
source Elsevier ScienceDirect Journals
subjects Applied sciences
Cold thermal energy
Devices using thermal energy
Energy
Energy storage
Energy. Thermal use of fuels
Exact sciences and technology
Experimental
Finite-volume
Finned tube
Heat exchangers (included heat transformers, condensers, cooling towers)
Heat transfer
Ice formation
Measurement
Numerical
Phase change
Solidification
Transport and storage of energy
title Ice formation around a finned-tube heat exchanger for cold thermal energy storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A02%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ice%20formation%20around%20a%20finned-tube%20heat%20exchanger%20for%20cold%20thermal%20energy%20storage&rft.jtitle=International%20journal%20of%20thermal%20sciences&rft.au=Kayansayan,%20N.&rft.date=2006-04-01&rft.volume=45&rft.issue=4&rft.spage=405&rft.epage=418&rft.pages=405-418&rft.issn=1290-0729&rft.eissn=1778-4166&rft_id=info:doi/10.1016/j.ijthermalsci.2005.05.009&rft_dat=%3Cproquest_cross%3E29122968%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29122968&rft_id=info:pmid/&rft_els_id=S1290072905001584&rfr_iscdi=true