Coefficient-free adaptations of polynomial root-finders
We adapt two celebrated polynomial root-finders. Performing one of them, we involve only the scaled values of the input polynomial c(λ) at the points approximating the roots and recursively updated. Performing another root-finder, we also compute the values of the derivative c'(λ) at these poin...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2005-07, Vol.50 (1), p.263-269 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 269 |
---|---|
container_issue | 1 |
container_start_page | 263 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 50 |
creator | Pan, V.Y. |
description | We adapt two celebrated polynomial root-finders. Performing one of them, we involve only the scaled values of the input polynomial
c(λ) at the points approximating the roots and recursively updated. Performing another root-finder, we also compute the values of the derivative
c'(λ) at these points. In neither case do we use the coefficients of
c(λ). We also relate our algorithms to approximating the eigenvalues of a matrix. |
doi_str_mv | 10.1016/j.camwa.2004.05.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29121449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122105002488</els_id><sourcerecordid>29121449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-99b6fcc6fd1e5873d9671a22de09465821981e3d8ff661915e3255048a4d2b123</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1gyIZYEn5M49sCAKr6kSiwwW659llwlcbFTUP89DmVmuuV537t7CLkGWgEFfretjB6-dcUobSraVhTkCVmA6Oqy41yckgUVUpTAGJyTi5S2NIM1owvSrQI6543HcSpdRCy01btJTz6MqQiu2IX-MIbB676IIWTGjxZjuiRnTvcJr_7mknw8Pb6vXsr12_Pr6mFdmpqzqZRyw50x3FnANp9jJe9AM2aRyoa3goEUgLUVznEOElqsWdvSRujGsg2weklujr27GD73mCY1-GSw7_WIYZ8Uk8CgaWQGb_8Fgc7LoKVzZ31ETQwpRXRqF_2g4yFDavapturXp5p9Ktqq7DOn7o8pzO9-eYwqzdYMWh_RTMoG_2_-B8XbfeM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082191502</pqid></control><display><type>article</type><title>Coefficient-free adaptations of polynomial root-finders</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Pan, V.Y.</creator><creatorcontrib>Pan, V.Y.</creatorcontrib><description>We adapt two celebrated polynomial root-finders. Performing one of them, we involve only the scaled values of the input polynomial
c(λ) at the points approximating the roots and recursively updated. Performing another root-finder, we also compute the values of the derivative
c'(λ) at these points. In neither case do we use the coefficients of
c(λ). We also relate our algorithms to approximating the eigenvalues of a matrix.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2004.05.019</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Aberth's method ; Adaptation ; Algorithms ; Approximation ; Coefficient-free adaptations ; Derivatives ; Durand-Kerner's method ; Eigenvalues ; Mathematical analysis ; Mathematical models ; Roots</subject><ispartof>Computers & mathematics with applications (1987), 2005-07, Vol.50 (1), p.263-269</ispartof><rights>2005 Elsevier Ltd. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c362t-99b6fcc6fd1e5873d9671a22de09465821981e3d8ff661915e3255048a4d2b123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2004.05.019$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Pan, V.Y.</creatorcontrib><title>Coefficient-free adaptations of polynomial root-finders</title><title>Computers & mathematics with applications (1987)</title><description>We adapt two celebrated polynomial root-finders. Performing one of them, we involve only the scaled values of the input polynomial
c(λ) at the points approximating the roots and recursively updated. Performing another root-finder, we also compute the values of the derivative
c'(λ) at these points. In neither case do we use the coefficients of
c(λ). We also relate our algorithms to approximating the eigenvalues of a matrix.</description><subject>Aberth's method</subject><subject>Adaptation</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Coefficient-free adaptations</subject><subject>Derivatives</subject><subject>Durand-Kerner's method</subject><subject>Eigenvalues</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Roots</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1gyIZYEn5M49sCAKr6kSiwwW659llwlcbFTUP89DmVmuuV537t7CLkGWgEFfretjB6-dcUobSraVhTkCVmA6Oqy41yckgUVUpTAGJyTi5S2NIM1owvSrQI6543HcSpdRCy01btJTz6MqQiu2IX-MIbB676IIWTGjxZjuiRnTvcJr_7mknw8Pb6vXsr12_Pr6mFdmpqzqZRyw50x3FnANp9jJe9AM2aRyoa3goEUgLUVznEOElqsWdvSRujGsg2weklujr27GD73mCY1-GSw7_WIYZ8Uk8CgaWQGb_8Fgc7LoKVzZ31ETQwpRXRqF_2g4yFDavapturXp5p9Ktqq7DOn7o8pzO9-eYwqzdYMWh_RTMoG_2_-B8XbfeM</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>Pan, V.Y.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050701</creationdate><title>Coefficient-free adaptations of polynomial root-finders</title><author>Pan, V.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-99b6fcc6fd1e5873d9671a22de09465821981e3d8ff661915e3255048a4d2b123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Aberth's method</topic><topic>Adaptation</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Coefficient-free adaptations</topic><topic>Derivatives</topic><topic>Durand-Kerner's method</topic><topic>Eigenvalues</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Roots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, V.Y.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, V.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coefficient-free adaptations of polynomial root-finders</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2005-07-01</date><risdate>2005</risdate><volume>50</volume><issue>1</issue><spage>263</spage><epage>269</epage><pages>263-269</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>We adapt two celebrated polynomial root-finders. Performing one of them, we involve only the scaled values of the input polynomial
c(λ) at the points approximating the roots and recursively updated. Performing another root-finder, we also compute the values of the derivative
c'(λ) at these points. In neither case do we use the coefficients of
c(λ). We also relate our algorithms to approximating the eigenvalues of a matrix.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2004.05.019</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2005-07, Vol.50 (1), p.263-269 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_miscellaneous_29121449 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present) |
subjects | Aberth's method Adaptation Algorithms Approximation Coefficient-free adaptations Derivatives Durand-Kerner's method Eigenvalues Mathematical analysis Mathematical models Roots |
title | Coefficient-free adaptations of polynomial root-finders |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A31%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coefficient-free%20adaptations%20of%20polynomial%20root-finders&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Pan,%20V.Y.&rft.date=2005-07-01&rft.volume=50&rft.issue=1&rft.spage=263&rft.epage=269&rft.pages=263-269&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2004.05.019&rft_dat=%3Cproquest_cross%3E29121449%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082191502&rft_id=info:pmid/&rft_els_id=S0898122105002488&rfr_iscdi=true |