Coefficient-free adaptations of polynomial root-finders

We adapt two celebrated polynomial root-finders. Performing one of them, we involve only the scaled values of the input polynomial c(λ) at the points approximating the roots and recursively updated. Performing another root-finder, we also compute the values of the derivative c'(λ) at these poin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2005-07, Vol.50 (1), p.263-269
1. Verfasser: Pan, V.Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 269
container_issue 1
container_start_page 263
container_title Computers & mathematics with applications (1987)
container_volume 50
creator Pan, V.Y.
description We adapt two celebrated polynomial root-finders. Performing one of them, we involve only the scaled values of the input polynomial c(λ) at the points approximating the roots and recursively updated. Performing another root-finder, we also compute the values of the derivative c'(λ) at these points. In neither case do we use the coefficients of c(λ). We also relate our algorithms to approximating the eigenvalues of a matrix.
doi_str_mv 10.1016/j.camwa.2004.05.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29121449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122105002488</els_id><sourcerecordid>29121449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-99b6fcc6fd1e5873d9671a22de09465821981e3d8ff661915e3255048a4d2b123</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1gyIZYEn5M49sCAKr6kSiwwW659llwlcbFTUP89DmVmuuV537t7CLkGWgEFfretjB6-dcUobSraVhTkCVmA6Oqy41yckgUVUpTAGJyTi5S2NIM1owvSrQI6543HcSpdRCy01btJTz6MqQiu2IX-MIbB676IIWTGjxZjuiRnTvcJr_7mknw8Pb6vXsr12_Pr6mFdmpqzqZRyw50x3FnANp9jJe9AM2aRyoa3goEUgLUVznEOElqsWdvSRujGsg2weklujr27GD73mCY1-GSw7_WIYZ8Uk8CgaWQGb_8Fgc7LoKVzZ31ETQwpRXRqF_2g4yFDavapturXp5p9Ktqq7DOn7o8pzO9-eYwqzdYMWh_RTMoG_2_-B8XbfeM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082191502</pqid></control><display><type>article</type><title>Coefficient-free adaptations of polynomial root-finders</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Pan, V.Y.</creator><creatorcontrib>Pan, V.Y.</creatorcontrib><description>We adapt two celebrated polynomial root-finders. Performing one of them, we involve only the scaled values of the input polynomial c(λ) at the points approximating the roots and recursively updated. Performing another root-finder, we also compute the values of the derivative c'(λ) at these points. In neither case do we use the coefficients of c(λ). We also relate our algorithms to approximating the eigenvalues of a matrix.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2004.05.019</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Aberth's method ; Adaptation ; Algorithms ; Approximation ; Coefficient-free adaptations ; Derivatives ; Durand-Kerner's method ; Eigenvalues ; Mathematical analysis ; Mathematical models ; Roots</subject><ispartof>Computers &amp; mathematics with applications (1987), 2005-07, Vol.50 (1), p.263-269</ispartof><rights>2005 Elsevier Ltd. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c362t-99b6fcc6fd1e5873d9671a22de09465821981e3d8ff661915e3255048a4d2b123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2004.05.019$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Pan, V.Y.</creatorcontrib><title>Coefficient-free adaptations of polynomial root-finders</title><title>Computers &amp; mathematics with applications (1987)</title><description>We adapt two celebrated polynomial root-finders. Performing one of them, we involve only the scaled values of the input polynomial c(λ) at the points approximating the roots and recursively updated. Performing another root-finder, we also compute the values of the derivative c'(λ) at these points. In neither case do we use the coefficients of c(λ). We also relate our algorithms to approximating the eigenvalues of a matrix.</description><subject>Aberth's method</subject><subject>Adaptation</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Coefficient-free adaptations</subject><subject>Derivatives</subject><subject>Durand-Kerner's method</subject><subject>Eigenvalues</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Roots</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1gyIZYEn5M49sCAKr6kSiwwW659llwlcbFTUP89DmVmuuV537t7CLkGWgEFfretjB6-dcUobSraVhTkCVmA6Oqy41yckgUVUpTAGJyTi5S2NIM1owvSrQI6543HcSpdRCy01btJTz6MqQiu2IX-MIbB676IIWTGjxZjuiRnTvcJr_7mknw8Pb6vXsr12_Pr6mFdmpqzqZRyw50x3FnANp9jJe9AM2aRyoa3goEUgLUVznEOElqsWdvSRujGsg2weklujr27GD73mCY1-GSw7_WIYZ8Uk8CgaWQGb_8Fgc7LoKVzZ31ETQwpRXRqF_2g4yFDavapturXp5p9Ktqq7DOn7o8pzO9-eYwqzdYMWh_RTMoG_2_-B8XbfeM</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>Pan, V.Y.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050701</creationdate><title>Coefficient-free adaptations of polynomial root-finders</title><author>Pan, V.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-99b6fcc6fd1e5873d9671a22de09465821981e3d8ff661915e3255048a4d2b123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Aberth's method</topic><topic>Adaptation</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Coefficient-free adaptations</topic><topic>Derivatives</topic><topic>Durand-Kerner's method</topic><topic>Eigenvalues</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Roots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, V.Y.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, V.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coefficient-free adaptations of polynomial root-finders</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2005-07-01</date><risdate>2005</risdate><volume>50</volume><issue>1</issue><spage>263</spage><epage>269</epage><pages>263-269</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>We adapt two celebrated polynomial root-finders. Performing one of them, we involve only the scaled values of the input polynomial c(λ) at the points approximating the roots and recursively updated. Performing another root-finder, we also compute the values of the derivative c'(λ) at these points. In neither case do we use the coefficients of c(λ). We also relate our algorithms to approximating the eigenvalues of a matrix.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2004.05.019</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2005-07, Vol.50 (1), p.263-269
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_29121449
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present)
subjects Aberth's method
Adaptation
Algorithms
Approximation
Coefficient-free adaptations
Derivatives
Durand-Kerner's method
Eigenvalues
Mathematical analysis
Mathematical models
Roots
title Coefficient-free adaptations of polynomial root-finders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A31%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coefficient-free%20adaptations%20of%20polynomial%20root-finders&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Pan,%20V.Y.&rft.date=2005-07-01&rft.volume=50&rft.issue=1&rft.spage=263&rft.epage=269&rft.pages=263-269&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2004.05.019&rft_dat=%3Cproquest_cross%3E29121449%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082191502&rft_id=info:pmid/&rft_els_id=S0898122105002488&rfr_iscdi=true