Harnessing low dimensionality to visualize the antibody-virus landscape for influenza

Antibodies constitute a key line of defense against the diverse pathogens we encounter in our lives. Although the interactions between a single antibody and a single virus are routinely characterized in exquisite detail, the inherent tradeoffs between attributes such as potency and breadth remain un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature Computational Science 2023-02, Vol.3 (2), p.164-173
Hauptverfasser: Einav, Tal, Creanga, Adrian, Andrews, Sarah F, McDermott, Adrian B, Kanekiyo, Masaru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 173
container_issue 2
container_start_page 164
container_title Nature Computational Science
container_volume 3
creator Einav, Tal
Creanga, Adrian
Andrews, Sarah F
McDermott, Adrian B
Kanekiyo, Masaru
description Antibodies constitute a key line of defense against the diverse pathogens we encounter in our lives. Although the interactions between a single antibody and a single virus are routinely characterized in exquisite detail, the inherent tradeoffs between attributes such as potency and breadth remain unclear. Moreover, there is a wide gap between the discrete interactions of single antibodies and the collective behavior of antibody mixtures. Here we develop a form of antigenic cartography called a 'neutralization landscape' that visualizes and quantifies antibody-virus interactions for antibodies targeting the influenza hemagglutinin stem. This landscape transforms the potency-breadth tradeoff into a readily solvable geometry problem. With it, we decompose the collective neutralization from multiple antibodies to characterize the composition and functional properties of the stem antibodies within. Looking forward, this framework can leverage the serological assays routinely performed for influenza surveillance to analyze how an individual's antibody repertoire evolves after vaccination or infection.
doi_str_mv 10.1038/s43588-022-00375-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2911842295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2911842295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-1e342d91b565cb725e054614e50c2c123f2ca571074e92fec4f2fce7f422ef993</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMottT-AQ-So5fVZJJsdo9S1AoFL_YcstmJRvajbnYr7a93tVU8zQw878vwEHLJ2Q1nIruNUqgsSxhAwpjQKuEnZAppCkkmlT79t0_IPMZ3xhgoLlgqzslEZFzrFNSUrJe2azDG0LzSqv2kZaixiaFtbBX6He1bug1xGI890v4NqW36ULTlLtmGboi0sk0Znd0g9W1HQ-OrAZu9vSBn3lYR58c5I-uH-5fFMlk9Pz4t7laJE1L3CUchocx5oVLlCg0KmZIpl6iYA8dBeHBWac60xBw8OunBO9ReAqDPczEj14feTdd-DBh7U4fosBrfwnaIBnLOsxHO1YjCAXVdG2OH3my6UNtuZzgz30bNwagZjZofo4aPoatj_1DUWP5Ffv2JL4ywchg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911842295</pqid></control><display><type>article</type><title>Harnessing low dimensionality to visualize the antibody-virus landscape for influenza</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Einav, Tal ; Creanga, Adrian ; Andrews, Sarah F ; McDermott, Adrian B ; Kanekiyo, Masaru</creator><creatorcontrib>Einav, Tal ; Creanga, Adrian ; Andrews, Sarah F ; McDermott, Adrian B ; Kanekiyo, Masaru</creatorcontrib><description>Antibodies constitute a key line of defense against the diverse pathogens we encounter in our lives. Although the interactions between a single antibody and a single virus are routinely characterized in exquisite detail, the inherent tradeoffs between attributes such as potency and breadth remain unclear. Moreover, there is a wide gap between the discrete interactions of single antibodies and the collective behavior of antibody mixtures. Here we develop a form of antigenic cartography called a 'neutralization landscape' that visualizes and quantifies antibody-virus interactions for antibodies targeting the influenza hemagglutinin stem. This landscape transforms the potency-breadth tradeoff into a readily solvable geometry problem. With it, we decompose the collective neutralization from multiple antibodies to characterize the composition and functional properties of the stem antibodies within. Looking forward, this framework can leverage the serological assays routinely performed for influenza surveillance to analyze how an individual's antibody repertoire evolves after vaccination or infection.</description><identifier>ISSN: 2662-8457</identifier><identifier>EISSN: 2662-8457</identifier><identifier>DOI: 10.1038/s43588-022-00375-1</identifier><identifier>PMID: 38177625</identifier><language>eng</language><publisher>United States</publisher><subject>Antibodies, Neutralizing ; Antibodies, Viral ; Hemagglutinin Glycoproteins, Influenza Virus ; Hemagglutinins ; Humans ; Influenza, Human</subject><ispartof>Nature Computational Science, 2023-02, Vol.3 (2), p.164-173</ispartof><rights>2022. The Author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-1e342d91b565cb725e054614e50c2c123f2ca571074e92fec4f2fce7f422ef993</citedby><cites>FETCH-LOGICAL-c347t-1e342d91b565cb725e054614e50c2c123f2ca571074e92fec4f2fce7f422ef993</cites><orcidid>0000-0001-5767-1532 ; 0000-0003-0616-9117 ; 0000-0003-0777-1193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38177625$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Einav, Tal</creatorcontrib><creatorcontrib>Creanga, Adrian</creatorcontrib><creatorcontrib>Andrews, Sarah F</creatorcontrib><creatorcontrib>McDermott, Adrian B</creatorcontrib><creatorcontrib>Kanekiyo, Masaru</creatorcontrib><title>Harnessing low dimensionality to visualize the antibody-virus landscape for influenza</title><title>Nature Computational Science</title><addtitle>Nat Comput Sci</addtitle><description>Antibodies constitute a key line of defense against the diverse pathogens we encounter in our lives. Although the interactions between a single antibody and a single virus are routinely characterized in exquisite detail, the inherent tradeoffs between attributes such as potency and breadth remain unclear. Moreover, there is a wide gap between the discrete interactions of single antibodies and the collective behavior of antibody mixtures. Here we develop a form of antigenic cartography called a 'neutralization landscape' that visualizes and quantifies antibody-virus interactions for antibodies targeting the influenza hemagglutinin stem. This landscape transforms the potency-breadth tradeoff into a readily solvable geometry problem. With it, we decompose the collective neutralization from multiple antibodies to characterize the composition and functional properties of the stem antibodies within. Looking forward, this framework can leverage the serological assays routinely performed for influenza surveillance to analyze how an individual's antibody repertoire evolves after vaccination or infection.</description><subject>Antibodies, Neutralizing</subject><subject>Antibodies, Viral</subject><subject>Hemagglutinin Glycoproteins, Influenza Virus</subject><subject>Hemagglutinins</subject><subject>Humans</subject><subject>Influenza, Human</subject><issn>2662-8457</issn><issn>2662-8457</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkE1LAzEQhoMottT-AQ-So5fVZJJsdo9S1AoFL_YcstmJRvajbnYr7a93tVU8zQw878vwEHLJ2Q1nIruNUqgsSxhAwpjQKuEnZAppCkkmlT79t0_IPMZ3xhgoLlgqzslEZFzrFNSUrJe2azDG0LzSqv2kZaixiaFtbBX6He1bug1xGI890v4NqW36ULTlLtmGboi0sk0Znd0g9W1HQ-OrAZu9vSBn3lYR58c5I-uH-5fFMlk9Pz4t7laJE1L3CUchocx5oVLlCg0KmZIpl6iYA8dBeHBWac60xBw8OunBO9ReAqDPczEj14feTdd-DBh7U4fosBrfwnaIBnLOsxHO1YjCAXVdG2OH3my6UNtuZzgz30bNwagZjZofo4aPoatj_1DUWP5Ffv2JL4ywchg</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Einav, Tal</creator><creator>Creanga, Adrian</creator><creator>Andrews, Sarah F</creator><creator>McDermott, Adrian B</creator><creator>Kanekiyo, Masaru</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5767-1532</orcidid><orcidid>https://orcid.org/0000-0003-0616-9117</orcidid><orcidid>https://orcid.org/0000-0003-0777-1193</orcidid></search><sort><creationdate>20230201</creationdate><title>Harnessing low dimensionality to visualize the antibody-virus landscape for influenza</title><author>Einav, Tal ; Creanga, Adrian ; Andrews, Sarah F ; McDermott, Adrian B ; Kanekiyo, Masaru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-1e342d91b565cb725e054614e50c2c123f2ca571074e92fec4f2fce7f422ef993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antibodies, Neutralizing</topic><topic>Antibodies, Viral</topic><topic>Hemagglutinin Glycoproteins, Influenza Virus</topic><topic>Hemagglutinins</topic><topic>Humans</topic><topic>Influenza, Human</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Einav, Tal</creatorcontrib><creatorcontrib>Creanga, Adrian</creatorcontrib><creatorcontrib>Andrews, Sarah F</creatorcontrib><creatorcontrib>McDermott, Adrian B</creatorcontrib><creatorcontrib>Kanekiyo, Masaru</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nature Computational Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Einav, Tal</au><au>Creanga, Adrian</au><au>Andrews, Sarah F</au><au>McDermott, Adrian B</au><au>Kanekiyo, Masaru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnessing low dimensionality to visualize the antibody-virus landscape for influenza</atitle><jtitle>Nature Computational Science</jtitle><addtitle>Nat Comput Sci</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>3</volume><issue>2</issue><spage>164</spage><epage>173</epage><pages>164-173</pages><issn>2662-8457</issn><eissn>2662-8457</eissn><abstract>Antibodies constitute a key line of defense against the diverse pathogens we encounter in our lives. Although the interactions between a single antibody and a single virus are routinely characterized in exquisite detail, the inherent tradeoffs between attributes such as potency and breadth remain unclear. Moreover, there is a wide gap between the discrete interactions of single antibodies and the collective behavior of antibody mixtures. Here we develop a form of antigenic cartography called a 'neutralization landscape' that visualizes and quantifies antibody-virus interactions for antibodies targeting the influenza hemagglutinin stem. This landscape transforms the potency-breadth tradeoff into a readily solvable geometry problem. With it, we decompose the collective neutralization from multiple antibodies to characterize the composition and functional properties of the stem antibodies within. Looking forward, this framework can leverage the serological assays routinely performed for influenza surveillance to analyze how an individual's antibody repertoire evolves after vaccination or infection.</abstract><cop>United States</cop><pmid>38177625</pmid><doi>10.1038/s43588-022-00375-1</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5767-1532</orcidid><orcidid>https://orcid.org/0000-0003-0616-9117</orcidid><orcidid>https://orcid.org/0000-0003-0777-1193</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2662-8457
ispartof Nature Computational Science, 2023-02, Vol.3 (2), p.164-173
issn 2662-8457
2662-8457
language eng
recordid cdi_proquest_miscellaneous_2911842295
source MEDLINE; SpringerLink Journals
subjects Antibodies, Neutralizing
Antibodies, Viral
Hemagglutinin Glycoproteins, Influenza Virus
Hemagglutinins
Humans
Influenza, Human
title Harnessing low dimensionality to visualize the antibody-virus landscape for influenza
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T06%3A50%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnessing%20low%20dimensionality%20to%20visualize%20the%20antibody-virus%20landscape%20for%20influenza&rft.jtitle=Nature%20Computational%20Science&rft.au=Einav,%20Tal&rft.date=2023-02-01&rft.volume=3&rft.issue=2&rft.spage=164&rft.epage=173&rft.pages=164-173&rft.issn=2662-8457&rft.eissn=2662-8457&rft_id=info:doi/10.1038/s43588-022-00375-1&rft_dat=%3Cproquest_cross%3E2911842295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2911842295&rft_id=info:pmid/38177625&rfr_iscdi=true