Harnessing low dimensionality to visualize the antibody-virus landscape for influenza
Antibodies constitute a key line of defense against the diverse pathogens we encounter in our lives. Although the interactions between a single antibody and a single virus are routinely characterized in exquisite detail, the inherent tradeoffs between attributes such as potency and breadth remain un...
Gespeichert in:
Veröffentlicht in: | Nature Computational Science 2023-02, Vol.3 (2), p.164-173 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 173 |
---|---|
container_issue | 2 |
container_start_page | 164 |
container_title | Nature Computational Science |
container_volume | 3 |
creator | Einav, Tal Creanga, Adrian Andrews, Sarah F McDermott, Adrian B Kanekiyo, Masaru |
description | Antibodies constitute a key line of defense against the diverse pathogens we encounter in our lives. Although the interactions between a single antibody and a single virus are routinely characterized in exquisite detail, the inherent tradeoffs between attributes such as potency and breadth remain unclear. Moreover, there is a wide gap between the discrete interactions of single antibodies and the collective behavior of antibody mixtures. Here we develop a form of antigenic cartography called a 'neutralization landscape' that visualizes and quantifies antibody-virus interactions for antibodies targeting the influenza hemagglutinin stem. This landscape transforms the potency-breadth tradeoff into a readily solvable geometry problem. With it, we decompose the collective neutralization from multiple antibodies to characterize the composition and functional properties of the stem antibodies within. Looking forward, this framework can leverage the serological assays routinely performed for influenza surveillance to analyze how an individual's antibody repertoire evolves after vaccination or infection. |
doi_str_mv | 10.1038/s43588-022-00375-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2911842295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2911842295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-1e342d91b565cb725e054614e50c2c123f2ca571074e92fec4f2fce7f422ef993</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMottT-AQ-So5fVZJJsdo9S1AoFL_YcstmJRvajbnYr7a93tVU8zQw878vwEHLJ2Q1nIruNUqgsSxhAwpjQKuEnZAppCkkmlT79t0_IPMZ3xhgoLlgqzslEZFzrFNSUrJe2azDG0LzSqv2kZaixiaFtbBX6He1bug1xGI890v4NqW36ULTlLtmGboi0sk0Znd0g9W1HQ-OrAZu9vSBn3lYR58c5I-uH-5fFMlk9Pz4t7laJE1L3CUchocx5oVLlCg0KmZIpl6iYA8dBeHBWac60xBw8OunBO9ReAqDPczEj14feTdd-DBh7U4fosBrfwnaIBnLOsxHO1YjCAXVdG2OH3my6UNtuZzgz30bNwagZjZofo4aPoatj_1DUWP5Ffv2JL4ywchg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911842295</pqid></control><display><type>article</type><title>Harnessing low dimensionality to visualize the antibody-virus landscape for influenza</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Einav, Tal ; Creanga, Adrian ; Andrews, Sarah F ; McDermott, Adrian B ; Kanekiyo, Masaru</creator><creatorcontrib>Einav, Tal ; Creanga, Adrian ; Andrews, Sarah F ; McDermott, Adrian B ; Kanekiyo, Masaru</creatorcontrib><description>Antibodies constitute a key line of defense against the diverse pathogens we encounter in our lives. Although the interactions between a single antibody and a single virus are routinely characterized in exquisite detail, the inherent tradeoffs between attributes such as potency and breadth remain unclear. Moreover, there is a wide gap between the discrete interactions of single antibodies and the collective behavior of antibody mixtures. Here we develop a form of antigenic cartography called a 'neutralization landscape' that visualizes and quantifies antibody-virus interactions for antibodies targeting the influenza hemagglutinin stem. This landscape transforms the potency-breadth tradeoff into a readily solvable geometry problem. With it, we decompose the collective neutralization from multiple antibodies to characterize the composition and functional properties of the stem antibodies within. Looking forward, this framework can leverage the serological assays routinely performed for influenza surveillance to analyze how an individual's antibody repertoire evolves after vaccination or infection.</description><identifier>ISSN: 2662-8457</identifier><identifier>EISSN: 2662-8457</identifier><identifier>DOI: 10.1038/s43588-022-00375-1</identifier><identifier>PMID: 38177625</identifier><language>eng</language><publisher>United States</publisher><subject>Antibodies, Neutralizing ; Antibodies, Viral ; Hemagglutinin Glycoproteins, Influenza Virus ; Hemagglutinins ; Humans ; Influenza, Human</subject><ispartof>Nature Computational Science, 2023-02, Vol.3 (2), p.164-173</ispartof><rights>2022. The Author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-1e342d91b565cb725e054614e50c2c123f2ca571074e92fec4f2fce7f422ef993</citedby><cites>FETCH-LOGICAL-c347t-1e342d91b565cb725e054614e50c2c123f2ca571074e92fec4f2fce7f422ef993</cites><orcidid>0000-0001-5767-1532 ; 0000-0003-0616-9117 ; 0000-0003-0777-1193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38177625$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Einav, Tal</creatorcontrib><creatorcontrib>Creanga, Adrian</creatorcontrib><creatorcontrib>Andrews, Sarah F</creatorcontrib><creatorcontrib>McDermott, Adrian B</creatorcontrib><creatorcontrib>Kanekiyo, Masaru</creatorcontrib><title>Harnessing low dimensionality to visualize the antibody-virus landscape for influenza</title><title>Nature Computational Science</title><addtitle>Nat Comput Sci</addtitle><description>Antibodies constitute a key line of defense against the diverse pathogens we encounter in our lives. Although the interactions between a single antibody and a single virus are routinely characterized in exquisite detail, the inherent tradeoffs between attributes such as potency and breadth remain unclear. Moreover, there is a wide gap between the discrete interactions of single antibodies and the collective behavior of antibody mixtures. Here we develop a form of antigenic cartography called a 'neutralization landscape' that visualizes and quantifies antibody-virus interactions for antibodies targeting the influenza hemagglutinin stem. This landscape transforms the potency-breadth tradeoff into a readily solvable geometry problem. With it, we decompose the collective neutralization from multiple antibodies to characterize the composition and functional properties of the stem antibodies within. Looking forward, this framework can leverage the serological assays routinely performed for influenza surveillance to analyze how an individual's antibody repertoire evolves after vaccination or infection.</description><subject>Antibodies, Neutralizing</subject><subject>Antibodies, Viral</subject><subject>Hemagglutinin Glycoproteins, Influenza Virus</subject><subject>Hemagglutinins</subject><subject>Humans</subject><subject>Influenza, Human</subject><issn>2662-8457</issn><issn>2662-8457</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkE1LAzEQhoMottT-AQ-So5fVZJJsdo9S1AoFL_YcstmJRvajbnYr7a93tVU8zQw878vwEHLJ2Q1nIruNUqgsSxhAwpjQKuEnZAppCkkmlT79t0_IPMZ3xhgoLlgqzslEZFzrFNSUrJe2azDG0LzSqv2kZaixiaFtbBX6He1bug1xGI890v4NqW36ULTlLtmGboi0sk0Znd0g9W1HQ-OrAZu9vSBn3lYR58c5I-uH-5fFMlk9Pz4t7laJE1L3CUchocx5oVLlCg0KmZIpl6iYA8dBeHBWac60xBw8OunBO9ReAqDPczEj14feTdd-DBh7U4fosBrfwnaIBnLOsxHO1YjCAXVdG2OH3my6UNtuZzgz30bNwagZjZofo4aPoatj_1DUWP5Ffv2JL4ywchg</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Einav, Tal</creator><creator>Creanga, Adrian</creator><creator>Andrews, Sarah F</creator><creator>McDermott, Adrian B</creator><creator>Kanekiyo, Masaru</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5767-1532</orcidid><orcidid>https://orcid.org/0000-0003-0616-9117</orcidid><orcidid>https://orcid.org/0000-0003-0777-1193</orcidid></search><sort><creationdate>20230201</creationdate><title>Harnessing low dimensionality to visualize the antibody-virus landscape for influenza</title><author>Einav, Tal ; Creanga, Adrian ; Andrews, Sarah F ; McDermott, Adrian B ; Kanekiyo, Masaru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-1e342d91b565cb725e054614e50c2c123f2ca571074e92fec4f2fce7f422ef993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antibodies, Neutralizing</topic><topic>Antibodies, Viral</topic><topic>Hemagglutinin Glycoproteins, Influenza Virus</topic><topic>Hemagglutinins</topic><topic>Humans</topic><topic>Influenza, Human</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Einav, Tal</creatorcontrib><creatorcontrib>Creanga, Adrian</creatorcontrib><creatorcontrib>Andrews, Sarah F</creatorcontrib><creatorcontrib>McDermott, Adrian B</creatorcontrib><creatorcontrib>Kanekiyo, Masaru</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nature Computational Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Einav, Tal</au><au>Creanga, Adrian</au><au>Andrews, Sarah F</au><au>McDermott, Adrian B</au><au>Kanekiyo, Masaru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnessing low dimensionality to visualize the antibody-virus landscape for influenza</atitle><jtitle>Nature Computational Science</jtitle><addtitle>Nat Comput Sci</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>3</volume><issue>2</issue><spage>164</spage><epage>173</epage><pages>164-173</pages><issn>2662-8457</issn><eissn>2662-8457</eissn><abstract>Antibodies constitute a key line of defense against the diverse pathogens we encounter in our lives. Although the interactions between a single antibody and a single virus are routinely characterized in exquisite detail, the inherent tradeoffs between attributes such as potency and breadth remain unclear. Moreover, there is a wide gap between the discrete interactions of single antibodies and the collective behavior of antibody mixtures. Here we develop a form of antigenic cartography called a 'neutralization landscape' that visualizes and quantifies antibody-virus interactions for antibodies targeting the influenza hemagglutinin stem. This landscape transforms the potency-breadth tradeoff into a readily solvable geometry problem. With it, we decompose the collective neutralization from multiple antibodies to characterize the composition and functional properties of the stem antibodies within. Looking forward, this framework can leverage the serological assays routinely performed for influenza surveillance to analyze how an individual's antibody repertoire evolves after vaccination or infection.</abstract><cop>United States</cop><pmid>38177625</pmid><doi>10.1038/s43588-022-00375-1</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5767-1532</orcidid><orcidid>https://orcid.org/0000-0003-0616-9117</orcidid><orcidid>https://orcid.org/0000-0003-0777-1193</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2662-8457 |
ispartof | Nature Computational Science, 2023-02, Vol.3 (2), p.164-173 |
issn | 2662-8457 2662-8457 |
language | eng |
recordid | cdi_proquest_miscellaneous_2911842295 |
source | MEDLINE; SpringerLink Journals |
subjects | Antibodies, Neutralizing Antibodies, Viral Hemagglutinin Glycoproteins, Influenza Virus Hemagglutinins Humans Influenza, Human |
title | Harnessing low dimensionality to visualize the antibody-virus landscape for influenza |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T06%3A50%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnessing%20low%20dimensionality%20to%20visualize%20the%20antibody-virus%20landscape%20for%20influenza&rft.jtitle=Nature%20Computational%20Science&rft.au=Einav,%20Tal&rft.date=2023-02-01&rft.volume=3&rft.issue=2&rft.spage=164&rft.epage=173&rft.pages=164-173&rft.issn=2662-8457&rft.eissn=2662-8457&rft_id=info:doi/10.1038/s43588-022-00375-1&rft_dat=%3Cproquest_cross%3E2911842295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2911842295&rft_id=info:pmid/38177625&rfr_iscdi=true |