Unraveling neoantigen‐associated genes in bladder cancer: An in‐depth analysis employing 101 machine learning algorithms
The therapeutic outcomes for bladder cancer (BLCA) remain suboptimal. Concurrently, there is a growing appreciation for the role of neoantigens in tumors. In this study, we explored the mechanisms underlying the involvement of neoantigen‐associated genes in BLCA and their impact on prognosis. Our an...
Gespeichert in:
Veröffentlicht in: | Environmental toxicology 2024-05, Vol.39 (5), p.2528-2544 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2544 |
---|---|
container_issue | 5 |
container_start_page | 2528 |
container_title | Environmental toxicology |
container_volume | 39 |
creator | Lv, Fang Xiong, Qi Qi, Meiying Dai, Caixia Zhang, Xiuhong Cheng, Shunhua |
description | The therapeutic outcomes for bladder cancer (BLCA) remain suboptimal. Concurrently, there is a growing appreciation for the role of neoantigens in tumors. In this study, we explored the mechanisms underlying the involvement of neoantigen‐associated genes in BLCA and their impact on prognosis. Our analysis incorporated both single‐cell sequencing and bulk sequencing data sourced from publicly available databases. By employing a comprehensive set of 10 machine learning algorithms, we generated 101 algorithm combinations. The optimal combination, determined based on consistency indices, was utilized to construct a prognostic model comprising nine genes (CAPG, ACTA2, PDIA6, AKNA, PTMS, SNAP23, ID2, CD3G, SP140). Subsequently, we validated this model in an independent cohort, demonstrating its robust testing efficacy. Moreover, we explored the correlations between various clinical traits, model scores, and genes. Leveraging extensive public data resources, we conducted a drug sensitivity analysis to provide insights for targeted drug screening. Additionally, consensus clustering analysis and immune infiltration analysis were performed on bulk sequencing datasets and immunotherapy cohorts. These analyses yield valuable insights into the role of neoantigens in BLCA, guiding future research endeavors. |
doi_str_mv | 10.1002/tox.24123 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2911841145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2911841145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3133-d63832e60374f2823b24a7c3617b8d46c63674aebec942693e577c675fecdc563</originalsourceid><addsrcrecordid>eNp1kcFKHTEUhkNRqrVd9AVKwE1djOYkmWTGnUi1BcGNQnchkzn33kgmc03mtr3QRR-hz9gnMderXQiuzuHn44Ofn5CPwI6BMX4yjb-OuQQu3pB9qDmvNNfNzuPPKska2CPvcr5jjLWqVm_JnmigaUHLffL7Nib7A4OPcxpxtHHyc4z__vy1OY_O2wl7WgLM1EfaBdv3mKiz0WE6pWexpIXtcTktqI02rLPPFIdlGNcbIzCgg3ULH5EGtCluQhvmY_LTYsjvye7Mhowfnu4Bub34cnP-tbq6vvx2fnZVOQFCVL0SjeComNByxhsuOi6tdkKB7ppeKqeE0tJih66VXLUCa62d0vUMXe9qJQ7I5613mcb7FebJDD47DMGWyqtseAvQSABZF_TwBXo3rlJplo1gouWggUOhjraUS2POCWdmmfxg09oAM5tJTJnEPE5S2E9PxlU3YP-ffN6gACdb4KcPuH7dZG6uv2-VD8mBl5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039217121</pqid></control><display><type>article</type><title>Unraveling neoantigen‐associated genes in bladder cancer: An in‐depth analysis employing 101 machine learning algorithms</title><source>Wiley-Blackwell Journals</source><creator>Lv, Fang ; Xiong, Qi ; Qi, Meiying ; Dai, Caixia ; Zhang, Xiuhong ; Cheng, Shunhua</creator><creatorcontrib>Lv, Fang ; Xiong, Qi ; Qi, Meiying ; Dai, Caixia ; Zhang, Xiuhong ; Cheng, Shunhua</creatorcontrib><description>The therapeutic outcomes for bladder cancer (BLCA) remain suboptimal. Concurrently, there is a growing appreciation for the role of neoantigens in tumors. In this study, we explored the mechanisms underlying the involvement of neoantigen‐associated genes in BLCA and their impact on prognosis. Our analysis incorporated both single‐cell sequencing and bulk sequencing data sourced from publicly available databases. By employing a comprehensive set of 10 machine learning algorithms, we generated 101 algorithm combinations. The optimal combination, determined based on consistency indices, was utilized to construct a prognostic model comprising nine genes (CAPG, ACTA2, PDIA6, AKNA, PTMS, SNAP23, ID2, CD3G, SP140). Subsequently, we validated this model in an independent cohort, demonstrating its robust testing efficacy. Moreover, we explored the correlations between various clinical traits, model scores, and genes. Leveraging extensive public data resources, we conducted a drug sensitivity analysis to provide insights for targeted drug screening. Additionally, consensus clustering analysis and immune infiltration analysis were performed on bulk sequencing datasets and immunotherapy cohorts. These analyses yield valuable insights into the role of neoantigens in BLCA, guiding future research endeavors.</description><identifier>ISSN: 1520-4081</identifier><identifier>EISSN: 1522-7278</identifier><identifier>DOI: 10.1002/tox.24123</identifier><identifier>PMID: 38189174</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Algorithms ; Bladder ; Bladder cancer ; BLCA ; Cancer ; Cluster analysis ; Clustering ; Drug screening ; Drugs ; Genes ; Immunotherapy ; Impact analysis ; Learning algorithms ; Machine learning ; Metastases ; neoantigen ; Neoantigens ; neoantigen‐related genes ; Sensitivity analysis ; Sequencing</subject><ispartof>Environmental toxicology, 2024-05, Vol.39 (5), p.2528-2544</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3133-d63832e60374f2823b24a7c3617b8d46c63674aebec942693e577c675fecdc563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ftox.24123$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ftox.24123$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38189174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lv, Fang</creatorcontrib><creatorcontrib>Xiong, Qi</creatorcontrib><creatorcontrib>Qi, Meiying</creatorcontrib><creatorcontrib>Dai, Caixia</creatorcontrib><creatorcontrib>Zhang, Xiuhong</creatorcontrib><creatorcontrib>Cheng, Shunhua</creatorcontrib><title>Unraveling neoantigen‐associated genes in bladder cancer: An in‐depth analysis employing 101 machine learning algorithms</title><title>Environmental toxicology</title><addtitle>Environ Toxicol</addtitle><description>The therapeutic outcomes for bladder cancer (BLCA) remain suboptimal. Concurrently, there is a growing appreciation for the role of neoantigens in tumors. In this study, we explored the mechanisms underlying the involvement of neoantigen‐associated genes in BLCA and their impact on prognosis. Our analysis incorporated both single‐cell sequencing and bulk sequencing data sourced from publicly available databases. By employing a comprehensive set of 10 machine learning algorithms, we generated 101 algorithm combinations. The optimal combination, determined based on consistency indices, was utilized to construct a prognostic model comprising nine genes (CAPG, ACTA2, PDIA6, AKNA, PTMS, SNAP23, ID2, CD3G, SP140). Subsequently, we validated this model in an independent cohort, demonstrating its robust testing efficacy. Moreover, we explored the correlations between various clinical traits, model scores, and genes. Leveraging extensive public data resources, we conducted a drug sensitivity analysis to provide insights for targeted drug screening. Additionally, consensus clustering analysis and immune infiltration analysis were performed on bulk sequencing datasets and immunotherapy cohorts. These analyses yield valuable insights into the role of neoantigens in BLCA, guiding future research endeavors.</description><subject>Algorithms</subject><subject>Bladder</subject><subject>Bladder cancer</subject><subject>BLCA</subject><subject>Cancer</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Drug screening</subject><subject>Drugs</subject><subject>Genes</subject><subject>Immunotherapy</subject><subject>Impact analysis</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Metastases</subject><subject>neoantigen</subject><subject>Neoantigens</subject><subject>neoantigen‐related genes</subject><subject>Sensitivity analysis</subject><subject>Sequencing</subject><issn>1520-4081</issn><issn>1522-7278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kcFKHTEUhkNRqrVd9AVKwE1djOYkmWTGnUi1BcGNQnchkzn33kgmc03mtr3QRR-hz9gnMderXQiuzuHn44Ofn5CPwI6BMX4yjb-OuQQu3pB9qDmvNNfNzuPPKska2CPvcr5jjLWqVm_JnmigaUHLffL7Nib7A4OPcxpxtHHyc4z__vy1OY_O2wl7WgLM1EfaBdv3mKiz0WE6pWexpIXtcTktqI02rLPPFIdlGNcbIzCgg3ULH5EGtCluQhvmY_LTYsjvye7Mhowfnu4Bub34cnP-tbq6vvx2fnZVOQFCVL0SjeComNByxhsuOi6tdkKB7ppeKqeE0tJih66VXLUCa62d0vUMXe9qJQ7I5613mcb7FebJDD47DMGWyqtseAvQSABZF_TwBXo3rlJplo1gouWggUOhjraUS2POCWdmmfxg09oAM5tJTJnEPE5S2E9PxlU3YP-ffN6gACdb4KcPuH7dZG6uv2-VD8mBl5g</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Lv, Fang</creator><creator>Xiong, Qi</creator><creator>Qi, Meiying</creator><creator>Dai, Caixia</creator><creator>Zhang, Xiuhong</creator><creator>Cheng, Shunhua</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>M7N</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>202405</creationdate><title>Unraveling neoantigen‐associated genes in bladder cancer: An in‐depth analysis employing 101 machine learning algorithms</title><author>Lv, Fang ; Xiong, Qi ; Qi, Meiying ; Dai, Caixia ; Zhang, Xiuhong ; Cheng, Shunhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3133-d63832e60374f2823b24a7c3617b8d46c63674aebec942693e577c675fecdc563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Bladder</topic><topic>Bladder cancer</topic><topic>BLCA</topic><topic>Cancer</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Drug screening</topic><topic>Drugs</topic><topic>Genes</topic><topic>Immunotherapy</topic><topic>Impact analysis</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Metastases</topic><topic>neoantigen</topic><topic>Neoantigens</topic><topic>neoantigen‐related genes</topic><topic>Sensitivity analysis</topic><topic>Sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Fang</creatorcontrib><creatorcontrib>Xiong, Qi</creatorcontrib><creatorcontrib>Qi, Meiying</creatorcontrib><creatorcontrib>Dai, Caixia</creatorcontrib><creatorcontrib>Zhang, Xiuhong</creatorcontrib><creatorcontrib>Cheng, Shunhua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Fang</au><au>Xiong, Qi</au><au>Qi, Meiying</au><au>Dai, Caixia</au><au>Zhang, Xiuhong</au><au>Cheng, Shunhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling neoantigen‐associated genes in bladder cancer: An in‐depth analysis employing 101 machine learning algorithms</atitle><jtitle>Environmental toxicology</jtitle><addtitle>Environ Toxicol</addtitle><date>2024-05</date><risdate>2024</risdate><volume>39</volume><issue>5</issue><spage>2528</spage><epage>2544</epage><pages>2528-2544</pages><issn>1520-4081</issn><eissn>1522-7278</eissn><abstract>The therapeutic outcomes for bladder cancer (BLCA) remain suboptimal. Concurrently, there is a growing appreciation for the role of neoantigens in tumors. In this study, we explored the mechanisms underlying the involvement of neoantigen‐associated genes in BLCA and their impact on prognosis. Our analysis incorporated both single‐cell sequencing and bulk sequencing data sourced from publicly available databases. By employing a comprehensive set of 10 machine learning algorithms, we generated 101 algorithm combinations. The optimal combination, determined based on consistency indices, was utilized to construct a prognostic model comprising nine genes (CAPG, ACTA2, PDIA6, AKNA, PTMS, SNAP23, ID2, CD3G, SP140). Subsequently, we validated this model in an independent cohort, demonstrating its robust testing efficacy. Moreover, we explored the correlations between various clinical traits, model scores, and genes. Leveraging extensive public data resources, we conducted a drug sensitivity analysis to provide insights for targeted drug screening. Additionally, consensus clustering analysis and immune infiltration analysis were performed on bulk sequencing datasets and immunotherapy cohorts. These analyses yield valuable insights into the role of neoantigens in BLCA, guiding future research endeavors.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>38189174</pmid><doi>10.1002/tox.24123</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-4081 |
ispartof | Environmental toxicology, 2024-05, Vol.39 (5), p.2528-2544 |
issn | 1520-4081 1522-7278 |
language | eng |
recordid | cdi_proquest_miscellaneous_2911841145 |
source | Wiley-Blackwell Journals |
subjects | Algorithms Bladder Bladder cancer BLCA Cancer Cluster analysis Clustering Drug screening Drugs Genes Immunotherapy Impact analysis Learning algorithms Machine learning Metastases neoantigen Neoantigens neoantigen‐related genes Sensitivity analysis Sequencing |
title | Unraveling neoantigen‐associated genes in bladder cancer: An in‐depth analysis employing 101 machine learning algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T23%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20neoantigen%E2%80%90associated%20genes%20in%20bladder%20cancer:%20An%20in%E2%80%90depth%20analysis%20employing%20101%20machine%20learning%20algorithms&rft.jtitle=Environmental%20toxicology&rft.au=Lv,%20Fang&rft.date=2024-05&rft.volume=39&rft.issue=5&rft.spage=2528&rft.epage=2544&rft.pages=2528-2544&rft.issn=1520-4081&rft.eissn=1522-7278&rft_id=info:doi/10.1002/tox.24123&rft_dat=%3Cproquest_cross%3E2911841145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039217121&rft_id=info:pmid/38189174&rfr_iscdi=true |