Unraveling neoantigen‐associated genes in bladder cancer: An in‐depth analysis employing 101 machine learning algorithms

The therapeutic outcomes for bladder cancer (BLCA) remain suboptimal. Concurrently, there is a growing appreciation for the role of neoantigens in tumors. In this study, we explored the mechanisms underlying the involvement of neoantigen‐associated genes in BLCA and their impact on prognosis. Our an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental toxicology 2024-05, Vol.39 (5), p.2528-2544
Hauptverfasser: Lv, Fang, Xiong, Qi, Qi, Meiying, Dai, Caixia, Zhang, Xiuhong, Cheng, Shunhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2544
container_issue 5
container_start_page 2528
container_title Environmental toxicology
container_volume 39
creator Lv, Fang
Xiong, Qi
Qi, Meiying
Dai, Caixia
Zhang, Xiuhong
Cheng, Shunhua
description The therapeutic outcomes for bladder cancer (BLCA) remain suboptimal. Concurrently, there is a growing appreciation for the role of neoantigens in tumors. In this study, we explored the mechanisms underlying the involvement of neoantigen‐associated genes in BLCA and their impact on prognosis. Our analysis incorporated both single‐cell sequencing and bulk sequencing data sourced from publicly available databases. By employing a comprehensive set of 10 machine learning algorithms, we generated 101 algorithm combinations. The optimal combination, determined based on consistency indices, was utilized to construct a prognostic model comprising nine genes (CAPG, ACTA2, PDIA6, AKNA, PTMS, SNAP23, ID2, CD3G, SP140). Subsequently, we validated this model in an independent cohort, demonstrating its robust testing efficacy. Moreover, we explored the correlations between various clinical traits, model scores, and genes. Leveraging extensive public data resources, we conducted a drug sensitivity analysis to provide insights for targeted drug screening. Additionally, consensus clustering analysis and immune infiltration analysis were performed on bulk sequencing datasets and immunotherapy cohorts. These analyses yield valuable insights into the role of neoantigens in BLCA, guiding future research endeavors.
doi_str_mv 10.1002/tox.24123
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2911841145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2911841145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3133-d63832e60374f2823b24a7c3617b8d46c63674aebec942693e577c675fecdc563</originalsourceid><addsrcrecordid>eNp1kcFKHTEUhkNRqrVd9AVKwE1djOYkmWTGnUi1BcGNQnchkzn33kgmc03mtr3QRR-hz9gnMderXQiuzuHn44Ofn5CPwI6BMX4yjb-OuQQu3pB9qDmvNNfNzuPPKska2CPvcr5jjLWqVm_JnmigaUHLffL7Nib7A4OPcxpxtHHyc4z__vy1OY_O2wl7WgLM1EfaBdv3mKiz0WE6pWexpIXtcTktqI02rLPPFIdlGNcbIzCgg3ULH5EGtCluQhvmY_LTYsjvye7Mhowfnu4Bub34cnP-tbq6vvx2fnZVOQFCVL0SjeComNByxhsuOi6tdkKB7ppeKqeE0tJih66VXLUCa62d0vUMXe9qJQ7I5613mcb7FebJDD47DMGWyqtseAvQSABZF_TwBXo3rlJplo1gouWggUOhjraUS2POCWdmmfxg09oAM5tJTJnEPE5S2E9PxlU3YP-ffN6gACdb4KcPuH7dZG6uv2-VD8mBl5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039217121</pqid></control><display><type>article</type><title>Unraveling neoantigen‐associated genes in bladder cancer: An in‐depth analysis employing 101 machine learning algorithms</title><source>Wiley-Blackwell Journals</source><creator>Lv, Fang ; Xiong, Qi ; Qi, Meiying ; Dai, Caixia ; Zhang, Xiuhong ; Cheng, Shunhua</creator><creatorcontrib>Lv, Fang ; Xiong, Qi ; Qi, Meiying ; Dai, Caixia ; Zhang, Xiuhong ; Cheng, Shunhua</creatorcontrib><description>The therapeutic outcomes for bladder cancer (BLCA) remain suboptimal. Concurrently, there is a growing appreciation for the role of neoantigens in tumors. In this study, we explored the mechanisms underlying the involvement of neoantigen‐associated genes in BLCA and their impact on prognosis. Our analysis incorporated both single‐cell sequencing and bulk sequencing data sourced from publicly available databases. By employing a comprehensive set of 10 machine learning algorithms, we generated 101 algorithm combinations. The optimal combination, determined based on consistency indices, was utilized to construct a prognostic model comprising nine genes (CAPG, ACTA2, PDIA6, AKNA, PTMS, SNAP23, ID2, CD3G, SP140). Subsequently, we validated this model in an independent cohort, demonstrating its robust testing efficacy. Moreover, we explored the correlations between various clinical traits, model scores, and genes. Leveraging extensive public data resources, we conducted a drug sensitivity analysis to provide insights for targeted drug screening. Additionally, consensus clustering analysis and immune infiltration analysis were performed on bulk sequencing datasets and immunotherapy cohorts. These analyses yield valuable insights into the role of neoantigens in BLCA, guiding future research endeavors.</description><identifier>ISSN: 1520-4081</identifier><identifier>EISSN: 1522-7278</identifier><identifier>DOI: 10.1002/tox.24123</identifier><identifier>PMID: 38189174</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Bladder ; Bladder cancer ; BLCA ; Cancer ; Cluster analysis ; Clustering ; Drug screening ; Drugs ; Genes ; Immunotherapy ; Impact analysis ; Learning algorithms ; Machine learning ; Metastases ; neoantigen ; Neoantigens ; neoantigen‐related genes ; Sensitivity analysis ; Sequencing</subject><ispartof>Environmental toxicology, 2024-05, Vol.39 (5), p.2528-2544</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3133-d63832e60374f2823b24a7c3617b8d46c63674aebec942693e577c675fecdc563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ftox.24123$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ftox.24123$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38189174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lv, Fang</creatorcontrib><creatorcontrib>Xiong, Qi</creatorcontrib><creatorcontrib>Qi, Meiying</creatorcontrib><creatorcontrib>Dai, Caixia</creatorcontrib><creatorcontrib>Zhang, Xiuhong</creatorcontrib><creatorcontrib>Cheng, Shunhua</creatorcontrib><title>Unraveling neoantigen‐associated genes in bladder cancer: An in‐depth analysis employing 101 machine learning algorithms</title><title>Environmental toxicology</title><addtitle>Environ Toxicol</addtitle><description>The therapeutic outcomes for bladder cancer (BLCA) remain suboptimal. Concurrently, there is a growing appreciation for the role of neoantigens in tumors. In this study, we explored the mechanisms underlying the involvement of neoantigen‐associated genes in BLCA and their impact on prognosis. Our analysis incorporated both single‐cell sequencing and bulk sequencing data sourced from publicly available databases. By employing a comprehensive set of 10 machine learning algorithms, we generated 101 algorithm combinations. The optimal combination, determined based on consistency indices, was utilized to construct a prognostic model comprising nine genes (CAPG, ACTA2, PDIA6, AKNA, PTMS, SNAP23, ID2, CD3G, SP140). Subsequently, we validated this model in an independent cohort, demonstrating its robust testing efficacy. Moreover, we explored the correlations between various clinical traits, model scores, and genes. Leveraging extensive public data resources, we conducted a drug sensitivity analysis to provide insights for targeted drug screening. Additionally, consensus clustering analysis and immune infiltration analysis were performed on bulk sequencing datasets and immunotherapy cohorts. These analyses yield valuable insights into the role of neoantigens in BLCA, guiding future research endeavors.</description><subject>Algorithms</subject><subject>Bladder</subject><subject>Bladder cancer</subject><subject>BLCA</subject><subject>Cancer</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Drug screening</subject><subject>Drugs</subject><subject>Genes</subject><subject>Immunotherapy</subject><subject>Impact analysis</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Metastases</subject><subject>neoantigen</subject><subject>Neoantigens</subject><subject>neoantigen‐related genes</subject><subject>Sensitivity analysis</subject><subject>Sequencing</subject><issn>1520-4081</issn><issn>1522-7278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kcFKHTEUhkNRqrVd9AVKwE1djOYkmWTGnUi1BcGNQnchkzn33kgmc03mtr3QRR-hz9gnMderXQiuzuHn44Ofn5CPwI6BMX4yjb-OuQQu3pB9qDmvNNfNzuPPKska2CPvcr5jjLWqVm_JnmigaUHLffL7Nib7A4OPcxpxtHHyc4z__vy1OY_O2wl7WgLM1EfaBdv3mKiz0WE6pWexpIXtcTktqI02rLPPFIdlGNcbIzCgg3ULH5EGtCluQhvmY_LTYsjvye7Mhowfnu4Bub34cnP-tbq6vvx2fnZVOQFCVL0SjeComNByxhsuOi6tdkKB7ppeKqeE0tJih66VXLUCa62d0vUMXe9qJQ7I5613mcb7FebJDD47DMGWyqtseAvQSABZF_TwBXo3rlJplo1gouWggUOhjraUS2POCWdmmfxg09oAM5tJTJnEPE5S2E9PxlU3YP-ffN6gACdb4KcPuH7dZG6uv2-VD8mBl5g</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Lv, Fang</creator><creator>Xiong, Qi</creator><creator>Qi, Meiying</creator><creator>Dai, Caixia</creator><creator>Zhang, Xiuhong</creator><creator>Cheng, Shunhua</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>M7N</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>202405</creationdate><title>Unraveling neoantigen‐associated genes in bladder cancer: An in‐depth analysis employing 101 machine learning algorithms</title><author>Lv, Fang ; Xiong, Qi ; Qi, Meiying ; Dai, Caixia ; Zhang, Xiuhong ; Cheng, Shunhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3133-d63832e60374f2823b24a7c3617b8d46c63674aebec942693e577c675fecdc563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Bladder</topic><topic>Bladder cancer</topic><topic>BLCA</topic><topic>Cancer</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Drug screening</topic><topic>Drugs</topic><topic>Genes</topic><topic>Immunotherapy</topic><topic>Impact analysis</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Metastases</topic><topic>neoantigen</topic><topic>Neoantigens</topic><topic>neoantigen‐related genes</topic><topic>Sensitivity analysis</topic><topic>Sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Fang</creatorcontrib><creatorcontrib>Xiong, Qi</creatorcontrib><creatorcontrib>Qi, Meiying</creatorcontrib><creatorcontrib>Dai, Caixia</creatorcontrib><creatorcontrib>Zhang, Xiuhong</creatorcontrib><creatorcontrib>Cheng, Shunhua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Fang</au><au>Xiong, Qi</au><au>Qi, Meiying</au><au>Dai, Caixia</au><au>Zhang, Xiuhong</au><au>Cheng, Shunhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling neoantigen‐associated genes in bladder cancer: An in‐depth analysis employing 101 machine learning algorithms</atitle><jtitle>Environmental toxicology</jtitle><addtitle>Environ Toxicol</addtitle><date>2024-05</date><risdate>2024</risdate><volume>39</volume><issue>5</issue><spage>2528</spage><epage>2544</epage><pages>2528-2544</pages><issn>1520-4081</issn><eissn>1522-7278</eissn><abstract>The therapeutic outcomes for bladder cancer (BLCA) remain suboptimal. Concurrently, there is a growing appreciation for the role of neoantigens in tumors. In this study, we explored the mechanisms underlying the involvement of neoantigen‐associated genes in BLCA and their impact on prognosis. Our analysis incorporated both single‐cell sequencing and bulk sequencing data sourced from publicly available databases. By employing a comprehensive set of 10 machine learning algorithms, we generated 101 algorithm combinations. The optimal combination, determined based on consistency indices, was utilized to construct a prognostic model comprising nine genes (CAPG, ACTA2, PDIA6, AKNA, PTMS, SNAP23, ID2, CD3G, SP140). Subsequently, we validated this model in an independent cohort, demonstrating its robust testing efficacy. Moreover, we explored the correlations between various clinical traits, model scores, and genes. Leveraging extensive public data resources, we conducted a drug sensitivity analysis to provide insights for targeted drug screening. Additionally, consensus clustering analysis and immune infiltration analysis were performed on bulk sequencing datasets and immunotherapy cohorts. These analyses yield valuable insights into the role of neoantigens in BLCA, guiding future research endeavors.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38189174</pmid><doi>10.1002/tox.24123</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-4081
ispartof Environmental toxicology, 2024-05, Vol.39 (5), p.2528-2544
issn 1520-4081
1522-7278
language eng
recordid cdi_proquest_miscellaneous_2911841145
source Wiley-Blackwell Journals
subjects Algorithms
Bladder
Bladder cancer
BLCA
Cancer
Cluster analysis
Clustering
Drug screening
Drugs
Genes
Immunotherapy
Impact analysis
Learning algorithms
Machine learning
Metastases
neoantigen
Neoantigens
neoantigen‐related genes
Sensitivity analysis
Sequencing
title Unraveling neoantigen‐associated genes in bladder cancer: An in‐depth analysis employing 101 machine learning algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T23%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20neoantigen%E2%80%90associated%20genes%20in%20bladder%20cancer:%20An%20in%E2%80%90depth%20analysis%20employing%20101%20machine%20learning%20algorithms&rft.jtitle=Environmental%20toxicology&rft.au=Lv,%20Fang&rft.date=2024-05&rft.volume=39&rft.issue=5&rft.spage=2528&rft.epage=2544&rft.pages=2528-2544&rft.issn=1520-4081&rft.eissn=1522-7278&rft_id=info:doi/10.1002/tox.24123&rft_dat=%3Cproquest_cross%3E2911841145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039217121&rft_id=info:pmid/38189174&rfr_iscdi=true