Strain-insensitive and multiplexed potentiometric ion sensors via printed PMMA molecular layer

Wearable biomimetic electronics have aroused tremendous attention due to their capability to continuously detect and deliver real-time dynamic physiological signals pertaining to the wearer's environment. However, upon close contact with the human skins, a wearable sensor undergoes mechanical s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytica chimica acta 2024-01, Vol.1287, p.342083-342083, Article 342083
Hauptverfasser: Lu, Quansheng, Wang, Yun, Lu, Yu, Ren, Yiping, Fu, Ran, Chen, Wenbin, Jiang, Guan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 342083
container_issue
container_start_page 342083
container_title Analytica chimica acta
container_volume 1287
creator Lu, Quansheng
Wang, Yun
Lu, Yu
Ren, Yiping
Fu, Ran
Chen, Wenbin
Jiang, Guan
description Wearable biomimetic electronics have aroused tremendous attention due to their capability to continuously detect and deliver real-time dynamic physiological signals pertaining to the wearer's environment. However, upon close contact with the human skins, a wearable sensor undergoes mechanical strain which inevitably degrades the electrical performance. To address this issue, we demonstrate a universal design approach for stretchable and multiplexed biosensors that can yield unaltered ion sensing performance under variable mechanical tensile strains, which is achieved by introducing a PMMA molecular layer between stretchable substrate and ion sensors. Such design demonstrates reliable multiplexed ion sensing capability and provides high sensitivity (>50 mV/decade), reliable selectivity, as well as wide working range (0.1-100 mM) for sodium, ammonium, potassium and calcium ions in complex sweat biomarkers. Via this introduced PMMA molecular layer, our sensor even exhibits 95 % electrical performance maintained up to 30 % tensile strain, whereas the mechanical tensile property is far superior to original sensor performance. Besides, the sensors were also utilized for real-time monitoring of ions in sweat to validate its biomedical electronics applications. This sensing platform can be easily extended to other biomimetic sensors to enable stable signal acquisition for biomedical electronics.
doi_str_mv 10.1016/j.aca.2023.342083
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2911840761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2911840761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-dbce345afcd4c682778dc9aee902875d1a18f6f87281d5987935c4e25fdb25bb3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMotlZ_gBvJ0s2MecxMMstSfEGLgro1ZJI7kDIvk0yx_94pVVeXA985cD-ErilJKaHF3TbVRqeMMJ7yjBHJT9CcSsGTjLPsFM0JITxhhSAzdBHCdoqMkuwczbikknEh5-jzLXrtusR1AbrgotsB1p3F7dhENzTwDRYPfYQuur6F6J3Bru_wAe59wDun8eBdFyfsdbNZ4rZvwIyN9rjRe_CX6KzWTYCr37tAHw_376unZP3y-LxarhPDCY2JrQzwLNe1sZkpJBNCWlNqgJIwKXJLNZV1UUvBJLV5KUXJc5MBy2tbsbyq-ALdHncH33-NEKJqXTDQNLqDfgyKlZTKjIiCTig9osb3IXio1fRAq_1eUaIOWtVWTVrVQas6ap06N7_zY9WC_W_8eeQ_lZh1og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911840761</pqid></control><display><type>article</type><title>Strain-insensitive and multiplexed potentiometric ion sensors via printed PMMA molecular layer</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Lu, Quansheng ; Wang, Yun ; Lu, Yu ; Ren, Yiping ; Fu, Ran ; Chen, Wenbin ; Jiang, Guan</creator><creatorcontrib>Lu, Quansheng ; Wang, Yun ; Lu, Yu ; Ren, Yiping ; Fu, Ran ; Chen, Wenbin ; Jiang, Guan</creatorcontrib><description>Wearable biomimetic electronics have aroused tremendous attention due to their capability to continuously detect and deliver real-time dynamic physiological signals pertaining to the wearer's environment. However, upon close contact with the human skins, a wearable sensor undergoes mechanical strain which inevitably degrades the electrical performance. To address this issue, we demonstrate a universal design approach for stretchable and multiplexed biosensors that can yield unaltered ion sensing performance under variable mechanical tensile strains, which is achieved by introducing a PMMA molecular layer between stretchable substrate and ion sensors. Such design demonstrates reliable multiplexed ion sensing capability and provides high sensitivity (&gt;50 mV/decade), reliable selectivity, as well as wide working range (0.1-100 mM) for sodium, ammonium, potassium and calcium ions in complex sweat biomarkers. Via this introduced PMMA molecular layer, our sensor even exhibits 95 % electrical performance maintained up to 30 % tensile strain, whereas the mechanical tensile property is far superior to original sensor performance. Besides, the sensors were also utilized for real-time monitoring of ions in sweat to validate its biomedical electronics applications. This sensing platform can be easily extended to other biomimetic sensors to enable stable signal acquisition for biomedical electronics.</description><identifier>ISSN: 0003-2670</identifier><identifier>EISSN: 1873-4324</identifier><identifier>DOI: 10.1016/j.aca.2023.342083</identifier><identifier>PMID: 38182378</identifier><language>eng</language><publisher>Netherlands</publisher><subject>Biomimetics ; Electricity ; Humans ; Ions ; Polymethyl Methacrylate ; Potassium</subject><ispartof>Analytica chimica acta, 2024-01, Vol.1287, p.342083-342083, Article 342083</ispartof><rights>Copyright © 2023. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-dbce345afcd4c682778dc9aee902875d1a18f6f87281d5987935c4e25fdb25bb3</citedby><cites>FETCH-LOGICAL-c301t-dbce345afcd4c682778dc9aee902875d1a18f6f87281d5987935c4e25fdb25bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38182378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Quansheng</creatorcontrib><creatorcontrib>Wang, Yun</creatorcontrib><creatorcontrib>Lu, Yu</creatorcontrib><creatorcontrib>Ren, Yiping</creatorcontrib><creatorcontrib>Fu, Ran</creatorcontrib><creatorcontrib>Chen, Wenbin</creatorcontrib><creatorcontrib>Jiang, Guan</creatorcontrib><title>Strain-insensitive and multiplexed potentiometric ion sensors via printed PMMA molecular layer</title><title>Analytica chimica acta</title><addtitle>Anal Chim Acta</addtitle><description>Wearable biomimetic electronics have aroused tremendous attention due to their capability to continuously detect and deliver real-time dynamic physiological signals pertaining to the wearer's environment. However, upon close contact with the human skins, a wearable sensor undergoes mechanical strain which inevitably degrades the electrical performance. To address this issue, we demonstrate a universal design approach for stretchable and multiplexed biosensors that can yield unaltered ion sensing performance under variable mechanical tensile strains, which is achieved by introducing a PMMA molecular layer between stretchable substrate and ion sensors. Such design demonstrates reliable multiplexed ion sensing capability and provides high sensitivity (&gt;50 mV/decade), reliable selectivity, as well as wide working range (0.1-100 mM) for sodium, ammonium, potassium and calcium ions in complex sweat biomarkers. Via this introduced PMMA molecular layer, our sensor even exhibits 95 % electrical performance maintained up to 30 % tensile strain, whereas the mechanical tensile property is far superior to original sensor performance. Besides, the sensors were also utilized for real-time monitoring of ions in sweat to validate its biomedical electronics applications. This sensing platform can be easily extended to other biomimetic sensors to enable stable signal acquisition for biomedical electronics.</description><subject>Biomimetics</subject><subject>Electricity</subject><subject>Humans</subject><subject>Ions</subject><subject>Polymethyl Methacrylate</subject><subject>Potassium</subject><issn>0003-2670</issn><issn>1873-4324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kEtLAzEUhYMotlZ_gBvJ0s2MecxMMstSfEGLgro1ZJI7kDIvk0yx_94pVVeXA985cD-ErilJKaHF3TbVRqeMMJ7yjBHJT9CcSsGTjLPsFM0JITxhhSAzdBHCdoqMkuwczbikknEh5-jzLXrtusR1AbrgotsB1p3F7dhENzTwDRYPfYQuur6F6J3Bru_wAe59wDun8eBdFyfsdbNZ4rZvwIyN9rjRe_CX6KzWTYCr37tAHw_376unZP3y-LxarhPDCY2JrQzwLNe1sZkpJBNCWlNqgJIwKXJLNZV1UUvBJLV5KUXJc5MBy2tbsbyq-ALdHncH33-NEKJqXTDQNLqDfgyKlZTKjIiCTig9osb3IXio1fRAq_1eUaIOWtVWTVrVQas6ap06N7_zY9WC_W_8eeQ_lZh1og</recordid><startdate>20240125</startdate><enddate>20240125</enddate><creator>Lu, Quansheng</creator><creator>Wang, Yun</creator><creator>Lu, Yu</creator><creator>Ren, Yiping</creator><creator>Fu, Ran</creator><creator>Chen, Wenbin</creator><creator>Jiang, Guan</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240125</creationdate><title>Strain-insensitive and multiplexed potentiometric ion sensors via printed PMMA molecular layer</title><author>Lu, Quansheng ; Wang, Yun ; Lu, Yu ; Ren, Yiping ; Fu, Ran ; Chen, Wenbin ; Jiang, Guan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-dbce345afcd4c682778dc9aee902875d1a18f6f87281d5987935c4e25fdb25bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomimetics</topic><topic>Electricity</topic><topic>Humans</topic><topic>Ions</topic><topic>Polymethyl Methacrylate</topic><topic>Potassium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Quansheng</creatorcontrib><creatorcontrib>Wang, Yun</creatorcontrib><creatorcontrib>Lu, Yu</creatorcontrib><creatorcontrib>Ren, Yiping</creatorcontrib><creatorcontrib>Fu, Ran</creatorcontrib><creatorcontrib>Chen, Wenbin</creatorcontrib><creatorcontrib>Jiang, Guan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Analytica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Quansheng</au><au>Wang, Yun</au><au>Lu, Yu</au><au>Ren, Yiping</au><au>Fu, Ran</au><au>Chen, Wenbin</au><au>Jiang, Guan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain-insensitive and multiplexed potentiometric ion sensors via printed PMMA molecular layer</atitle><jtitle>Analytica chimica acta</jtitle><addtitle>Anal Chim Acta</addtitle><date>2024-01-25</date><risdate>2024</risdate><volume>1287</volume><spage>342083</spage><epage>342083</epage><pages>342083-342083</pages><artnum>342083</artnum><issn>0003-2670</issn><eissn>1873-4324</eissn><abstract>Wearable biomimetic electronics have aroused tremendous attention due to their capability to continuously detect and deliver real-time dynamic physiological signals pertaining to the wearer's environment. However, upon close contact with the human skins, a wearable sensor undergoes mechanical strain which inevitably degrades the electrical performance. To address this issue, we demonstrate a universal design approach for stretchable and multiplexed biosensors that can yield unaltered ion sensing performance under variable mechanical tensile strains, which is achieved by introducing a PMMA molecular layer between stretchable substrate and ion sensors. Such design demonstrates reliable multiplexed ion sensing capability and provides high sensitivity (&gt;50 mV/decade), reliable selectivity, as well as wide working range (0.1-100 mM) for sodium, ammonium, potassium and calcium ions in complex sweat biomarkers. Via this introduced PMMA molecular layer, our sensor even exhibits 95 % electrical performance maintained up to 30 % tensile strain, whereas the mechanical tensile property is far superior to original sensor performance. Besides, the sensors were also utilized for real-time monitoring of ions in sweat to validate its biomedical electronics applications. This sensing platform can be easily extended to other biomimetic sensors to enable stable signal acquisition for biomedical electronics.</abstract><cop>Netherlands</cop><pmid>38182378</pmid><doi>10.1016/j.aca.2023.342083</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2670
ispartof Analytica chimica acta, 2024-01, Vol.1287, p.342083-342083, Article 342083
issn 0003-2670
1873-4324
language eng
recordid cdi_proquest_miscellaneous_2911840761
source MEDLINE; Elsevier ScienceDirect Journals
subjects Biomimetics
Electricity
Humans
Ions
Polymethyl Methacrylate
Potassium
title Strain-insensitive and multiplexed potentiometric ion sensors via printed PMMA molecular layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T23%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain-insensitive%20and%20multiplexed%20potentiometric%20ion%20sensors%20via%20printed%20PMMA%20molecular%20layer&rft.jtitle=Analytica%20chimica%20acta&rft.au=Lu,%20Quansheng&rft.date=2024-01-25&rft.volume=1287&rft.spage=342083&rft.epage=342083&rft.pages=342083-342083&rft.artnum=342083&rft.issn=0003-2670&rft.eissn=1873-4324&rft_id=info:doi/10.1016/j.aca.2023.342083&rft_dat=%3Cproquest_cross%3E2911840761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2911840761&rft_id=info:pmid/38182378&rfr_iscdi=true