Band gap dependence of the recombination processes in InAs/GaAs quantum dots studied using hydrostatic pressure

We present the results based upon a systematic study of the properties of quantum dot (QD) lasers with emission wavelengths around 0.98 and 1.3 µm at room temperature and atmospheric pressure. To investigate the radiative and non‐radiative components of the threshold current, we studied the temperat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica Status Solidi (b) 2007-01, Vol.244 (1), p.82-86
Hauptverfasser: Marko, I. P., Adams, A. R., Sweeney, S. J., Massé, N. F., Krebs, R., Reithmaier, J. P., Forchel, A., Mowbray, D. J., Skolnick, M. S., Liu, H. Y., Groom, K. M., Hatori, N., Sugawara, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86
container_issue 1
container_start_page 82
container_title Physica Status Solidi (b)
container_volume 244
creator Marko, I. P.
Adams, A. R.
Sweeney, S. J.
Massé, N. F.
Krebs, R.
Reithmaier, J. P.
Forchel, A.
Mowbray, D. J.
Skolnick, M. S.
Liu, H. Y.
Groom, K. M.
Hatori, N.
Sugawara, M.
description We present the results based upon a systematic study of the properties of quantum dot (QD) lasers with emission wavelengths around 0.98 and 1.3 µm at room temperature and atmospheric pressure. To investigate the radiative and non‐radiative components of the threshold current, we studied the temperature and high hydrostatic pressure dependencies of spontaneous and stimulated emission. Although important parameters such as lasing wavelength, QD density, ridge width, cavity length, threshold current density (J th) varied greatly, we found that all the lasers have nearly the same dependence of the radiative component, J rad, on band gap when it was tuned by the application of high pressure. It was observed that J rad increases strongly with band gap. Therefore the different dependencies of J th are explained in terms of the relative importance of different non‐radiative recombination mechanisms, such as Auger recombination and thermal carrier escape. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
doi_str_mv 10.1002/pssb.200672544
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29112206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29112206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3884-99be44c461fea1b8090232aefa73b623d9368d89f6599ec125e677bc223f47343</originalsourceid><addsrcrecordid>eNqFkEtv1DAUhS0EEkNhy9ob2GXqV-J4OVPRoWpV-qDq0nLsm9aQcVLfRGX-fVNNVdixupvvO_foEPKZsyVnTBwOiM1SMFZpUSr1hix4KXghTcnfkgWTmhXcaPGefED8xRjTXPIF6dcuBXrnBhpggBQgeaB9S8d7oBl8v21icmPsEx1y7wERkMZET9IKDzduhfRhcmmctjT0I1IcpxAh0AljuqP3u5B7HGfdz_bsThk-knet6xA-vdwDcnP87efR9-Lsx-bkaHVWeFnXqjCmAaW8qngLjjc1M0xI4aB1WjaVkMHIqg61aavSGPBclFBp3XghZKu0VPKAfN3nzrUfJsDRbiN66DqXoJ_QCsO5EKyaweUe9HNXzNDaIcetyzvLmX3e1T7val93nYUvL8kOveva7JKP-NeqlWSKsZkze-4xdrD7T6q9uL5e__uj2LsRR_jz6rr821Za6tLenm_s1enp-vK4XNsr-QTgspoC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29112206</pqid></control><display><type>article</type><title>Band gap dependence of the recombination processes in InAs/GaAs quantum dots studied using hydrostatic pressure</title><source>Wiley Journals</source><creator>Marko, I. P. ; Adams, A. R. ; Sweeney, S. J. ; Massé, N. F. ; Krebs, R. ; Reithmaier, J. P. ; Forchel, A. ; Mowbray, D. J. ; Skolnick, M. S. ; Liu, H. Y. ; Groom, K. M. ; Hatori, N. ; Sugawara, M.</creator><creatorcontrib>Marko, I. P. ; Adams, A. R. ; Sweeney, S. J. ; Massé, N. F. ; Krebs, R. ; Reithmaier, J. P. ; Forchel, A. ; Mowbray, D. J. ; Skolnick, M. S. ; Liu, H. Y. ; Groom, K. M. ; Hatori, N. ; Sugawara, M.</creatorcontrib><description>We present the results based upon a systematic study of the properties of quantum dot (QD) lasers with emission wavelengths around 0.98 and 1.3 µm at room temperature and atmospheric pressure. To investigate the radiative and non‐radiative components of the threshold current, we studied the temperature and high hydrostatic pressure dependencies of spontaneous and stimulated emission. Although important parameters such as lasing wavelength, QD density, ridge width, cavity length, threshold current density (J th) varied greatly, we found that all the lasers have nearly the same dependence of the radiative component, J rad, on band gap when it was tuned by the application of high pressure. It was observed that J rad increases strongly with band gap. Therefore the different dependencies of J th are explained in terms of the relative importance of different non‐radiative recombination mechanisms, such as Auger recombination and thermal carrier escape. (© 2007 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.200672544</identifier><identifier>CODEN: PSSBBD</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>42.55.Px ; 62.50.+p ; 72.20.Jv ; 78.45.+h ; 78.55.Cr ; 78.67.Hc ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Lasers ; Optics ; Physics ; Semiconductor lasers; laser diodes</subject><ispartof>Physica Status Solidi (b), 2007-01, Vol.244 (1), p.82-86</ispartof><rights>Copyright © 2007 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3884-99be44c461fea1b8090232aefa73b623d9368d89f6599ec125e677bc223f47343</citedby><cites>FETCH-LOGICAL-c3884-99be44c461fea1b8090232aefa73b623d9368d89f6599ec125e677bc223f47343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssb.200672544$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssb.200672544$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,1417,4050,4051,23930,23931,25140,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18430400$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Marko, I. P.</creatorcontrib><creatorcontrib>Adams, A. R.</creatorcontrib><creatorcontrib>Sweeney, S. J.</creatorcontrib><creatorcontrib>Massé, N. F.</creatorcontrib><creatorcontrib>Krebs, R.</creatorcontrib><creatorcontrib>Reithmaier, J. P.</creatorcontrib><creatorcontrib>Forchel, A.</creatorcontrib><creatorcontrib>Mowbray, D. J.</creatorcontrib><creatorcontrib>Skolnick, M. S.</creatorcontrib><creatorcontrib>Liu, H. Y.</creatorcontrib><creatorcontrib>Groom, K. M.</creatorcontrib><creatorcontrib>Hatori, N.</creatorcontrib><creatorcontrib>Sugawara, M.</creatorcontrib><title>Band gap dependence of the recombination processes in InAs/GaAs quantum dots studied using hydrostatic pressure</title><title>Physica Status Solidi (b)</title><addtitle>phys. stat. sol. (b)</addtitle><description>We present the results based upon a systematic study of the properties of quantum dot (QD) lasers with emission wavelengths around 0.98 and 1.3 µm at room temperature and atmospheric pressure. To investigate the radiative and non‐radiative components of the threshold current, we studied the temperature and high hydrostatic pressure dependencies of spontaneous and stimulated emission. Although important parameters such as lasing wavelength, QD density, ridge width, cavity length, threshold current density (J th) varied greatly, we found that all the lasers have nearly the same dependence of the radiative component, J rad, on band gap when it was tuned by the application of high pressure. It was observed that J rad increases strongly with band gap. Therefore the different dependencies of J th are explained in terms of the relative importance of different non‐radiative recombination mechanisms, such as Auger recombination and thermal carrier escape. (© 2007 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><subject>42.55.Px</subject><subject>62.50.+p</subject><subject>72.20.Jv</subject><subject>78.45.+h</subject><subject>78.55.Cr</subject><subject>78.67.Hc</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Lasers</subject><subject>Optics</subject><subject>Physics</subject><subject>Semiconductor lasers; laser diodes</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkEtv1DAUhS0EEkNhy9ob2GXqV-J4OVPRoWpV-qDq0nLsm9aQcVLfRGX-fVNNVdixupvvO_foEPKZsyVnTBwOiM1SMFZpUSr1hix4KXghTcnfkgWTmhXcaPGefED8xRjTXPIF6dcuBXrnBhpggBQgeaB9S8d7oBl8v21icmPsEx1y7wERkMZET9IKDzduhfRhcmmctjT0I1IcpxAh0AljuqP3u5B7HGfdz_bsThk-knet6xA-vdwDcnP87efR9-Lsx-bkaHVWeFnXqjCmAaW8qngLjjc1M0xI4aB1WjaVkMHIqg61aavSGPBclFBp3XghZKu0VPKAfN3nzrUfJsDRbiN66DqXoJ_QCsO5EKyaweUe9HNXzNDaIcetyzvLmX3e1T7val93nYUvL8kOveva7JKP-NeqlWSKsZkze-4xdrD7T6q9uL5e__uj2LsRR_jz6rr821Za6tLenm_s1enp-vK4XNsr-QTgspoC</recordid><startdate>200701</startdate><enddate>200701</enddate><creator>Marko, I. P.</creator><creator>Adams, A. R.</creator><creator>Sweeney, S. J.</creator><creator>Massé, N. F.</creator><creator>Krebs, R.</creator><creator>Reithmaier, J. P.</creator><creator>Forchel, A.</creator><creator>Mowbray, D. J.</creator><creator>Skolnick, M. S.</creator><creator>Liu, H. Y.</creator><creator>Groom, K. M.</creator><creator>Hatori, N.</creator><creator>Sugawara, M.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>200701</creationdate><title>Band gap dependence of the recombination processes in InAs/GaAs quantum dots studied using hydrostatic pressure</title><author>Marko, I. P. ; Adams, A. R. ; Sweeney, S. J. ; Massé, N. F. ; Krebs, R. ; Reithmaier, J. P. ; Forchel, A. ; Mowbray, D. J. ; Skolnick, M. S. ; Liu, H. Y. ; Groom, K. M. ; Hatori, N. ; Sugawara, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3884-99be44c461fea1b8090232aefa73b623d9368d89f6599ec125e677bc223f47343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>42.55.Px</topic><topic>62.50.+p</topic><topic>72.20.Jv</topic><topic>78.45.+h</topic><topic>78.55.Cr</topic><topic>78.67.Hc</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Lasers</topic><topic>Optics</topic><topic>Physics</topic><topic>Semiconductor lasers; laser diodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marko, I. P.</creatorcontrib><creatorcontrib>Adams, A. R.</creatorcontrib><creatorcontrib>Sweeney, S. J.</creatorcontrib><creatorcontrib>Massé, N. F.</creatorcontrib><creatorcontrib>Krebs, R.</creatorcontrib><creatorcontrib>Reithmaier, J. P.</creatorcontrib><creatorcontrib>Forchel, A.</creatorcontrib><creatorcontrib>Mowbray, D. J.</creatorcontrib><creatorcontrib>Skolnick, M. S.</creatorcontrib><creatorcontrib>Liu, H. Y.</creatorcontrib><creatorcontrib>Groom, K. M.</creatorcontrib><creatorcontrib>Hatori, N.</creatorcontrib><creatorcontrib>Sugawara, M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica Status Solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marko, I. P.</au><au>Adams, A. R.</au><au>Sweeney, S. J.</au><au>Massé, N. F.</au><au>Krebs, R.</au><au>Reithmaier, J. P.</au><au>Forchel, A.</au><au>Mowbray, D. J.</au><au>Skolnick, M. S.</au><au>Liu, H. Y.</au><au>Groom, K. M.</au><au>Hatori, N.</au><au>Sugawara, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Band gap dependence of the recombination processes in InAs/GaAs quantum dots studied using hydrostatic pressure</atitle><jtitle>Physica Status Solidi (b)</jtitle><addtitle>phys. stat. sol. (b)</addtitle><date>2007-01</date><risdate>2007</risdate><volume>244</volume><issue>1</issue><spage>82</spage><epage>86</epage><pages>82-86</pages><issn>0370-1972</issn><eissn>1521-3951</eissn><coden>PSSBBD</coden><abstract>We present the results based upon a systematic study of the properties of quantum dot (QD) lasers with emission wavelengths around 0.98 and 1.3 µm at room temperature and atmospheric pressure. To investigate the radiative and non‐radiative components of the threshold current, we studied the temperature and high hydrostatic pressure dependencies of spontaneous and stimulated emission. Although important parameters such as lasing wavelength, QD density, ridge width, cavity length, threshold current density (J th) varied greatly, we found that all the lasers have nearly the same dependence of the radiative component, J rad, on band gap when it was tuned by the application of high pressure. It was observed that J rad increases strongly with band gap. Therefore the different dependencies of J th are explained in terms of the relative importance of different non‐radiative recombination mechanisms, such as Auger recombination and thermal carrier escape. (© 2007 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssb.200672544</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0370-1972
ispartof Physica Status Solidi (b), 2007-01, Vol.244 (1), p.82-86
issn 0370-1972
1521-3951
language eng
recordid cdi_proquest_miscellaneous_29112206
source Wiley Journals
subjects 42.55.Px
62.50.+p
72.20.Jv
78.45.+h
78.55.Cr
78.67.Hc
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Lasers
Optics
Physics
Semiconductor lasers
laser diodes
title Band gap dependence of the recombination processes in InAs/GaAs quantum dots studied using hydrostatic pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A24%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Band%20gap%20dependence%20of%20the%20recombination%20processes%20in%20InAs/GaAs%20quantum%20dots%20studied%20using%20hydrostatic%20pressure&rft.jtitle=Physica%20Status%20Solidi%20(b)&rft.au=Marko,%20I.%20P.&rft.date=2007-01&rft.volume=244&rft.issue=1&rft.spage=82&rft.epage=86&rft.pages=82-86&rft.issn=0370-1972&rft.eissn=1521-3951&rft.coden=PSSBBD&rft_id=info:doi/10.1002/pssb.200672544&rft_dat=%3Cproquest_cross%3E29112206%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29112206&rft_id=info:pmid/&rfr_iscdi=true