Band gap dependence of the recombination processes in InAs/GaAs quantum dots studied using hydrostatic pressure
We present the results based upon a systematic study of the properties of quantum dot (QD) lasers with emission wavelengths around 0.98 and 1.3 µm at room temperature and atmospheric pressure. To investigate the radiative and non‐radiative components of the threshold current, we studied the temperat...
Gespeichert in:
Veröffentlicht in: | Physica Status Solidi (b) 2007-01, Vol.244 (1), p.82-86 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 86 |
---|---|
container_issue | 1 |
container_start_page | 82 |
container_title | Physica Status Solidi (b) |
container_volume | 244 |
creator | Marko, I. P. Adams, A. R. Sweeney, S. J. Massé, N. F. Krebs, R. Reithmaier, J. P. Forchel, A. Mowbray, D. J. Skolnick, M. S. Liu, H. Y. Groom, K. M. Hatori, N. Sugawara, M. |
description | We present the results based upon a systematic study of the properties of quantum dot (QD) lasers with emission wavelengths around 0.98 and 1.3 µm at room temperature and atmospheric pressure. To investigate the radiative and non‐radiative components of the threshold current, we studied the temperature and high hydrostatic pressure dependencies of spontaneous and stimulated emission. Although important parameters such as lasing wavelength, QD density, ridge width, cavity length, threshold current density (J th) varied greatly, we found that all the lasers have nearly the same dependence of the radiative component, J rad, on band gap when it was tuned by the application of high pressure. It was observed that J rad increases strongly with band gap. Therefore the different dependencies of J th are explained in terms of the relative importance of different non‐radiative recombination mechanisms, such as Auger recombination and thermal carrier escape. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
doi_str_mv | 10.1002/pssb.200672544 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29112206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29112206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3884-99be44c461fea1b8090232aefa73b623d9368d89f6599ec125e677bc223f47343</originalsourceid><addsrcrecordid>eNqFkEtv1DAUhS0EEkNhy9ob2GXqV-J4OVPRoWpV-qDq0nLsm9aQcVLfRGX-fVNNVdixupvvO_foEPKZsyVnTBwOiM1SMFZpUSr1hix4KXghTcnfkgWTmhXcaPGefED8xRjTXPIF6dcuBXrnBhpggBQgeaB9S8d7oBl8v21icmPsEx1y7wERkMZET9IKDzduhfRhcmmctjT0I1IcpxAh0AljuqP3u5B7HGfdz_bsThk-knet6xA-vdwDcnP87efR9-Lsx-bkaHVWeFnXqjCmAaW8qngLjjc1M0xI4aB1WjaVkMHIqg61aavSGPBclFBp3XghZKu0VPKAfN3nzrUfJsDRbiN66DqXoJ_QCsO5EKyaweUe9HNXzNDaIcetyzvLmX3e1T7val93nYUvL8kOveva7JKP-NeqlWSKsZkze-4xdrD7T6q9uL5e__uj2LsRR_jz6rr821Za6tLenm_s1enp-vK4XNsr-QTgspoC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29112206</pqid></control><display><type>article</type><title>Band gap dependence of the recombination processes in InAs/GaAs quantum dots studied using hydrostatic pressure</title><source>Wiley Journals</source><creator>Marko, I. P. ; Adams, A. R. ; Sweeney, S. J. ; Massé, N. F. ; Krebs, R. ; Reithmaier, J. P. ; Forchel, A. ; Mowbray, D. J. ; Skolnick, M. S. ; Liu, H. Y. ; Groom, K. M. ; Hatori, N. ; Sugawara, M.</creator><creatorcontrib>Marko, I. P. ; Adams, A. R. ; Sweeney, S. J. ; Massé, N. F. ; Krebs, R. ; Reithmaier, J. P. ; Forchel, A. ; Mowbray, D. J. ; Skolnick, M. S. ; Liu, H. Y. ; Groom, K. M. ; Hatori, N. ; Sugawara, M.</creatorcontrib><description>We present the results based upon a systematic study of the properties of quantum dot (QD) lasers with emission wavelengths around 0.98 and 1.3 µm at room temperature and atmospheric pressure. To investigate the radiative and non‐radiative components of the threshold current, we studied the temperature and high hydrostatic pressure dependencies of spontaneous and stimulated emission. Although important parameters such as lasing wavelength, QD density, ridge width, cavity length, threshold current density (J th) varied greatly, we found that all the lasers have nearly the same dependence of the radiative component, J rad, on band gap when it was tuned by the application of high pressure. It was observed that J rad increases strongly with band gap. Therefore the different dependencies of J th are explained in terms of the relative importance of different non‐radiative recombination mechanisms, such as Auger recombination and thermal carrier escape. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.200672544</identifier><identifier>CODEN: PSSBBD</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>42.55.Px ; 62.50.+p ; 72.20.Jv ; 78.45.+h ; 78.55.Cr ; 78.67.Hc ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Lasers ; Optics ; Physics ; Semiconductor lasers; laser diodes</subject><ispartof>Physica Status Solidi (b), 2007-01, Vol.244 (1), p.82-86</ispartof><rights>Copyright © 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3884-99be44c461fea1b8090232aefa73b623d9368d89f6599ec125e677bc223f47343</citedby><cites>FETCH-LOGICAL-c3884-99be44c461fea1b8090232aefa73b623d9368d89f6599ec125e677bc223f47343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssb.200672544$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssb.200672544$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,1417,4050,4051,23930,23931,25140,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18430400$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Marko, I. P.</creatorcontrib><creatorcontrib>Adams, A. R.</creatorcontrib><creatorcontrib>Sweeney, S. J.</creatorcontrib><creatorcontrib>Massé, N. F.</creatorcontrib><creatorcontrib>Krebs, R.</creatorcontrib><creatorcontrib>Reithmaier, J. P.</creatorcontrib><creatorcontrib>Forchel, A.</creatorcontrib><creatorcontrib>Mowbray, D. J.</creatorcontrib><creatorcontrib>Skolnick, M. S.</creatorcontrib><creatorcontrib>Liu, H. Y.</creatorcontrib><creatorcontrib>Groom, K. M.</creatorcontrib><creatorcontrib>Hatori, N.</creatorcontrib><creatorcontrib>Sugawara, M.</creatorcontrib><title>Band gap dependence of the recombination processes in InAs/GaAs quantum dots studied using hydrostatic pressure</title><title>Physica Status Solidi (b)</title><addtitle>phys. stat. sol. (b)</addtitle><description>We present the results based upon a systematic study of the properties of quantum dot (QD) lasers with emission wavelengths around 0.98 and 1.3 µm at room temperature and atmospheric pressure. To investigate the radiative and non‐radiative components of the threshold current, we studied the temperature and high hydrostatic pressure dependencies of spontaneous and stimulated emission. Although important parameters such as lasing wavelength, QD density, ridge width, cavity length, threshold current density (J th) varied greatly, we found that all the lasers have nearly the same dependence of the radiative component, J rad, on band gap when it was tuned by the application of high pressure. It was observed that J rad increases strongly with band gap. Therefore the different dependencies of J th are explained in terms of the relative importance of different non‐radiative recombination mechanisms, such as Auger recombination and thermal carrier escape. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><subject>42.55.Px</subject><subject>62.50.+p</subject><subject>72.20.Jv</subject><subject>78.45.+h</subject><subject>78.55.Cr</subject><subject>78.67.Hc</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Lasers</subject><subject>Optics</subject><subject>Physics</subject><subject>Semiconductor lasers; laser diodes</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkEtv1DAUhS0EEkNhy9ob2GXqV-J4OVPRoWpV-qDq0nLsm9aQcVLfRGX-fVNNVdixupvvO_foEPKZsyVnTBwOiM1SMFZpUSr1hix4KXghTcnfkgWTmhXcaPGefED8xRjTXPIF6dcuBXrnBhpggBQgeaB9S8d7oBl8v21icmPsEx1y7wERkMZET9IKDzduhfRhcmmctjT0I1IcpxAh0AljuqP3u5B7HGfdz_bsThk-knet6xA-vdwDcnP87efR9-Lsx-bkaHVWeFnXqjCmAaW8qngLjjc1M0xI4aB1WjaVkMHIqg61aavSGPBclFBp3XghZKu0VPKAfN3nzrUfJsDRbiN66DqXoJ_QCsO5EKyaweUe9HNXzNDaIcetyzvLmX3e1T7val93nYUvL8kOveva7JKP-NeqlWSKsZkze-4xdrD7T6q9uL5e__uj2LsRR_jz6rr821Za6tLenm_s1enp-vK4XNsr-QTgspoC</recordid><startdate>200701</startdate><enddate>200701</enddate><creator>Marko, I. P.</creator><creator>Adams, A. R.</creator><creator>Sweeney, S. J.</creator><creator>Massé, N. F.</creator><creator>Krebs, R.</creator><creator>Reithmaier, J. P.</creator><creator>Forchel, A.</creator><creator>Mowbray, D. J.</creator><creator>Skolnick, M. S.</creator><creator>Liu, H. Y.</creator><creator>Groom, K. M.</creator><creator>Hatori, N.</creator><creator>Sugawara, M.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>200701</creationdate><title>Band gap dependence of the recombination processes in InAs/GaAs quantum dots studied using hydrostatic pressure</title><author>Marko, I. P. ; Adams, A. R. ; Sweeney, S. J. ; Massé, N. F. ; Krebs, R. ; Reithmaier, J. P. ; Forchel, A. ; Mowbray, D. J. ; Skolnick, M. S. ; Liu, H. Y. ; Groom, K. M. ; Hatori, N. ; Sugawara, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3884-99be44c461fea1b8090232aefa73b623d9368d89f6599ec125e677bc223f47343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>42.55.Px</topic><topic>62.50.+p</topic><topic>72.20.Jv</topic><topic>78.45.+h</topic><topic>78.55.Cr</topic><topic>78.67.Hc</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Lasers</topic><topic>Optics</topic><topic>Physics</topic><topic>Semiconductor lasers; laser diodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marko, I. P.</creatorcontrib><creatorcontrib>Adams, A. R.</creatorcontrib><creatorcontrib>Sweeney, S. J.</creatorcontrib><creatorcontrib>Massé, N. F.</creatorcontrib><creatorcontrib>Krebs, R.</creatorcontrib><creatorcontrib>Reithmaier, J. P.</creatorcontrib><creatorcontrib>Forchel, A.</creatorcontrib><creatorcontrib>Mowbray, D. J.</creatorcontrib><creatorcontrib>Skolnick, M. S.</creatorcontrib><creatorcontrib>Liu, H. Y.</creatorcontrib><creatorcontrib>Groom, K. M.</creatorcontrib><creatorcontrib>Hatori, N.</creatorcontrib><creatorcontrib>Sugawara, M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica Status Solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marko, I. P.</au><au>Adams, A. R.</au><au>Sweeney, S. J.</au><au>Massé, N. F.</au><au>Krebs, R.</au><au>Reithmaier, J. P.</au><au>Forchel, A.</au><au>Mowbray, D. J.</au><au>Skolnick, M. S.</au><au>Liu, H. Y.</au><au>Groom, K. M.</au><au>Hatori, N.</au><au>Sugawara, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Band gap dependence of the recombination processes in InAs/GaAs quantum dots studied using hydrostatic pressure</atitle><jtitle>Physica Status Solidi (b)</jtitle><addtitle>phys. stat. sol. (b)</addtitle><date>2007-01</date><risdate>2007</risdate><volume>244</volume><issue>1</issue><spage>82</spage><epage>86</epage><pages>82-86</pages><issn>0370-1972</issn><eissn>1521-3951</eissn><coden>PSSBBD</coden><abstract>We present the results based upon a systematic study of the properties of quantum dot (QD) lasers with emission wavelengths around 0.98 and 1.3 µm at room temperature and atmospheric pressure. To investigate the radiative and non‐radiative components of the threshold current, we studied the temperature and high hydrostatic pressure dependencies of spontaneous and stimulated emission. Although important parameters such as lasing wavelength, QD density, ridge width, cavity length, threshold current density (J th) varied greatly, we found that all the lasers have nearly the same dependence of the radiative component, J rad, on band gap when it was tuned by the application of high pressure. It was observed that J rad increases strongly with band gap. Therefore the different dependencies of J th are explained in terms of the relative importance of different non‐radiative recombination mechanisms, such as Auger recombination and thermal carrier escape. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssb.200672544</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0370-1972 |
ispartof | Physica Status Solidi (b), 2007-01, Vol.244 (1), p.82-86 |
issn | 0370-1972 1521-3951 |
language | eng |
recordid | cdi_proquest_miscellaneous_29112206 |
source | Wiley Journals |
subjects | 42.55.Px 62.50.+p 72.20.Jv 78.45.+h 78.55.Cr 78.67.Hc Exact sciences and technology Fundamental areas of phenomenology (including applications) Lasers Optics Physics Semiconductor lasers laser diodes |
title | Band gap dependence of the recombination processes in InAs/GaAs quantum dots studied using hydrostatic pressure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A24%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Band%20gap%20dependence%20of%20the%20recombination%20processes%20in%20InAs/GaAs%20quantum%20dots%20studied%20using%20hydrostatic%20pressure&rft.jtitle=Physica%20Status%20Solidi%20(b)&rft.au=Marko,%20I.%20P.&rft.date=2007-01&rft.volume=244&rft.issue=1&rft.spage=82&rft.epage=86&rft.pages=82-86&rft.issn=0370-1972&rft.eissn=1521-3951&rft.coden=PSSBBD&rft_id=info:doi/10.1002/pssb.200672544&rft_dat=%3Cproquest_cross%3E29112206%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29112206&rft_id=info:pmid/&rfr_iscdi=true |