Basis selection in LOBPCG

The purpose of our paper is to discuss basis selection for Knyazev’s locally optimal block preconditioned conjugate gradient (LOBPCG) method. An inappropriate choice of basis can lead to ill-conditioned Gram matrices in the Rayleigh–Ritz analysis that can delay convergence or produce inaccurate eige...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2006-10, Vol.218 (1), p.324-332
Hauptverfasser: Hetmaniuk, U., Lehoucq, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 332
container_issue 1
container_start_page 324
container_title Journal of computational physics
container_volume 218
creator Hetmaniuk, U.
Lehoucq, R.
description The purpose of our paper is to discuss basis selection for Knyazev’s locally optimal block preconditioned conjugate gradient (LOBPCG) method. An inappropriate choice of basis can lead to ill-conditioned Gram matrices in the Rayleigh–Ritz analysis that can delay convergence or produce inaccurate eigenpairs. We demonstrate that the choice of basis is not merely related to computing in finite precision arithmetic. We propose a representation that maintains orthogonality of the basis vectors and so has excellent numerical properties.
doi_str_mv 10.1016/j.jcp.2006.02.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29111462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999106000866</els_id><sourcerecordid>29111462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-2ab5ee6623fc42e6ab8c7f7e80b38eb8d327c06ab5bd949826f9ea8ea5c93fb33</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_oLdeFC-7Tib7keDJFq1CoR70HLLZWciy3a1JK_jvm9KCt54Ghud9Z3gYm3BIOfDiqU1bu0kRoEgBU4Dygo04KEiw5MUlGwEgT5RS_JrdhNACgMwzOWKTmQkuTAN1ZLdu6Keuny5Xs8_54pZdNaYLdHeaY_b99vo1f0-Wq8XH_GWZWKH4NkFT5URFgaKxGVJhKmnLpiQJlZBUyVpgaSGu86pWmZJYNIqMJJNbJZpKiDF7OPZu_PCzo7DVaxcsdZ3padgFjYpznsX-MXs8C3KQyGWOyCPKj6j1QwieGr3xbm38X4T0wZdudfSlD740oI6-Yub-VG-CNV3jTW9d-A9KFALF4Y3nI0dRyq8jr4N11FuqnY8OdT24M1f2Ox99PQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082185221</pqid></control><display><type>article</type><title>Basis selection in LOBPCG</title><source>Elsevier ScienceDirect Journals</source><creator>Hetmaniuk, U. ; Lehoucq, R.</creator><creatorcontrib>Hetmaniuk, U. ; Lehoucq, R.</creatorcontrib><description>The purpose of our paper is to discuss basis selection for Knyazev’s locally optimal block preconditioned conjugate gradient (LOBPCG) method. An inappropriate choice of basis can lead to ill-conditioned Gram matrices in the Rayleigh–Ritz analysis that can delay convergence or produce inaccurate eigenpairs. We demonstrate that the choice of basis is not merely related to computing in finite precision arithmetic. We propose a representation that maintains orthogonality of the basis vectors and so has excellent numerical properties.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2006.02.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Blocking ; Computation ; Computational techniques ; Convergence ; Delay ; Exact sciences and technology ; LOBPCG ; Mathematical analysis ; Mathematical methods in physics ; Optimization ; Orthonormalization ; Physics ; Preconditioned eigensolver ; Representations ; Symmetric generalized eigenvalue problem ; Vectors (mathematics)</subject><ispartof>Journal of computational physics, 2006-10, Vol.218 (1), p.324-332</ispartof><rights>2006</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-2ab5ee6623fc42e6ab8c7f7e80b38eb8d327c06ab5bd949826f9ea8ea5c93fb33</citedby><cites>FETCH-LOGICAL-c391t-2ab5ee6623fc42e6ab8c7f7e80b38eb8d327c06ab5bd949826f9ea8ea5c93fb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999106000866$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18233232$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hetmaniuk, U.</creatorcontrib><creatorcontrib>Lehoucq, R.</creatorcontrib><title>Basis selection in LOBPCG</title><title>Journal of computational physics</title><description>The purpose of our paper is to discuss basis selection for Knyazev’s locally optimal block preconditioned conjugate gradient (LOBPCG) method. An inappropriate choice of basis can lead to ill-conditioned Gram matrices in the Rayleigh–Ritz analysis that can delay convergence or produce inaccurate eigenpairs. We demonstrate that the choice of basis is not merely related to computing in finite precision arithmetic. We propose a representation that maintains orthogonality of the basis vectors and so has excellent numerical properties.</description><subject>Blocking</subject><subject>Computation</subject><subject>Computational techniques</subject><subject>Convergence</subject><subject>Delay</subject><subject>Exact sciences and technology</subject><subject>LOBPCG</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Optimization</subject><subject>Orthonormalization</subject><subject>Physics</subject><subject>Preconditioned eigensolver</subject><subject>Representations</subject><subject>Symmetric generalized eigenvalue problem</subject><subject>Vectors (mathematics)</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_oLdeFC-7Tib7keDJFq1CoR70HLLZWciy3a1JK_jvm9KCt54Ghud9Z3gYm3BIOfDiqU1bu0kRoEgBU4Dygo04KEiw5MUlGwEgT5RS_JrdhNACgMwzOWKTmQkuTAN1ZLdu6Keuny5Xs8_54pZdNaYLdHeaY_b99vo1f0-Wq8XH_GWZWKH4NkFT5URFgaKxGVJhKmnLpiQJlZBUyVpgaSGu86pWmZJYNIqMJJNbJZpKiDF7OPZu_PCzo7DVaxcsdZ3padgFjYpznsX-MXs8C3KQyGWOyCPKj6j1QwieGr3xbm38X4T0wZdudfSlD740oI6-Yub-VG-CNV3jTW9d-A9KFALF4Y3nI0dRyq8jr4N11FuqnY8OdT24M1f2Ox99PQ</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Hetmaniuk, U.</creator><creator>Lehoucq, R.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20061001</creationdate><title>Basis selection in LOBPCG</title><author>Hetmaniuk, U. ; Lehoucq, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-2ab5ee6623fc42e6ab8c7f7e80b38eb8d327c06ab5bd949826f9ea8ea5c93fb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Blocking</topic><topic>Computation</topic><topic>Computational techniques</topic><topic>Convergence</topic><topic>Delay</topic><topic>Exact sciences and technology</topic><topic>LOBPCG</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Optimization</topic><topic>Orthonormalization</topic><topic>Physics</topic><topic>Preconditioned eigensolver</topic><topic>Representations</topic><topic>Symmetric generalized eigenvalue problem</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hetmaniuk, U.</creatorcontrib><creatorcontrib>Lehoucq, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hetmaniuk, U.</au><au>Lehoucq, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Basis selection in LOBPCG</atitle><jtitle>Journal of computational physics</jtitle><date>2006-10-01</date><risdate>2006</risdate><volume>218</volume><issue>1</issue><spage>324</spage><epage>332</epage><pages>324-332</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>The purpose of our paper is to discuss basis selection for Knyazev’s locally optimal block preconditioned conjugate gradient (LOBPCG) method. An inappropriate choice of basis can lead to ill-conditioned Gram matrices in the Rayleigh–Ritz analysis that can delay convergence or produce inaccurate eigenpairs. We demonstrate that the choice of basis is not merely related to computing in finite precision arithmetic. We propose a representation that maintains orthogonality of the basis vectors and so has excellent numerical properties.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2006.02.007</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2006-10, Vol.218 (1), p.324-332
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_29111462
source Elsevier ScienceDirect Journals
subjects Blocking
Computation
Computational techniques
Convergence
Delay
Exact sciences and technology
LOBPCG
Mathematical analysis
Mathematical methods in physics
Optimization
Orthonormalization
Physics
Preconditioned eigensolver
Representations
Symmetric generalized eigenvalue problem
Vectors (mathematics)
title Basis selection in LOBPCG
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Basis%20selection%20in%20LOBPCG&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Hetmaniuk,%20U.&rft.date=2006-10-01&rft.volume=218&rft.issue=1&rft.spage=324&rft.epage=332&rft.pages=324-332&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2006.02.007&rft_dat=%3Cproquest_cross%3E29111462%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082185221&rft_id=info:pmid/&rft_els_id=S0021999106000866&rfr_iscdi=true