Basis selection in LOBPCG
The purpose of our paper is to discuss basis selection for Knyazev’s locally optimal block preconditioned conjugate gradient (LOBPCG) method. An inappropriate choice of basis can lead to ill-conditioned Gram matrices in the Rayleigh–Ritz analysis that can delay convergence or produce inaccurate eige...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2006-10, Vol.218 (1), p.324-332 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 332 |
---|---|
container_issue | 1 |
container_start_page | 324 |
container_title | Journal of computational physics |
container_volume | 218 |
creator | Hetmaniuk, U. Lehoucq, R. |
description | The purpose of our paper is to discuss basis selection for Knyazev’s locally optimal block preconditioned conjugate gradient (LOBPCG) method. An inappropriate choice of basis can lead to ill-conditioned Gram matrices in the Rayleigh–Ritz analysis that can delay convergence or produce inaccurate eigenpairs. We demonstrate that the choice of basis is not merely related to computing in finite precision arithmetic. We propose a representation that maintains orthogonality of the basis vectors and so has excellent numerical properties. |
doi_str_mv | 10.1016/j.jcp.2006.02.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29111462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999106000866</els_id><sourcerecordid>29111462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-2ab5ee6623fc42e6ab8c7f7e80b38eb8d327c06ab5bd949826f9ea8ea5c93fb33</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_oLdeFC-7Tib7keDJFq1CoR70HLLZWciy3a1JK_jvm9KCt54Ghud9Z3gYm3BIOfDiqU1bu0kRoEgBU4Dygo04KEiw5MUlGwEgT5RS_JrdhNACgMwzOWKTmQkuTAN1ZLdu6Keuny5Xs8_54pZdNaYLdHeaY_b99vo1f0-Wq8XH_GWZWKH4NkFT5URFgaKxGVJhKmnLpiQJlZBUyVpgaSGu86pWmZJYNIqMJJNbJZpKiDF7OPZu_PCzo7DVaxcsdZ3padgFjYpznsX-MXs8C3KQyGWOyCPKj6j1QwieGr3xbm38X4T0wZdudfSlD740oI6-Yub-VG-CNV3jTW9d-A9KFALF4Y3nI0dRyq8jr4N11FuqnY8OdT24M1f2Ox99PQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082185221</pqid></control><display><type>article</type><title>Basis selection in LOBPCG</title><source>Elsevier ScienceDirect Journals</source><creator>Hetmaniuk, U. ; Lehoucq, R.</creator><creatorcontrib>Hetmaniuk, U. ; Lehoucq, R.</creatorcontrib><description>The purpose of our paper is to discuss basis selection for Knyazev’s locally optimal block preconditioned conjugate gradient (LOBPCG) method. An inappropriate choice of basis can lead to ill-conditioned Gram matrices in the Rayleigh–Ritz analysis that can delay convergence or produce inaccurate eigenpairs. We demonstrate that the choice of basis is not merely related to computing in finite precision arithmetic. We propose a representation that maintains orthogonality of the basis vectors and so has excellent numerical properties.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2006.02.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Blocking ; Computation ; Computational techniques ; Convergence ; Delay ; Exact sciences and technology ; LOBPCG ; Mathematical analysis ; Mathematical methods in physics ; Optimization ; Orthonormalization ; Physics ; Preconditioned eigensolver ; Representations ; Symmetric generalized eigenvalue problem ; Vectors (mathematics)</subject><ispartof>Journal of computational physics, 2006-10, Vol.218 (1), p.324-332</ispartof><rights>2006</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-2ab5ee6623fc42e6ab8c7f7e80b38eb8d327c06ab5bd949826f9ea8ea5c93fb33</citedby><cites>FETCH-LOGICAL-c391t-2ab5ee6623fc42e6ab8c7f7e80b38eb8d327c06ab5bd949826f9ea8ea5c93fb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999106000866$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18233232$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hetmaniuk, U.</creatorcontrib><creatorcontrib>Lehoucq, R.</creatorcontrib><title>Basis selection in LOBPCG</title><title>Journal of computational physics</title><description>The purpose of our paper is to discuss basis selection for Knyazev’s locally optimal block preconditioned conjugate gradient (LOBPCG) method. An inappropriate choice of basis can lead to ill-conditioned Gram matrices in the Rayleigh–Ritz analysis that can delay convergence or produce inaccurate eigenpairs. We demonstrate that the choice of basis is not merely related to computing in finite precision arithmetic. We propose a representation that maintains orthogonality of the basis vectors and so has excellent numerical properties.</description><subject>Blocking</subject><subject>Computation</subject><subject>Computational techniques</subject><subject>Convergence</subject><subject>Delay</subject><subject>Exact sciences and technology</subject><subject>LOBPCG</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Optimization</subject><subject>Orthonormalization</subject><subject>Physics</subject><subject>Preconditioned eigensolver</subject><subject>Representations</subject><subject>Symmetric generalized eigenvalue problem</subject><subject>Vectors (mathematics)</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_oLdeFC-7Tib7keDJFq1CoR70HLLZWciy3a1JK_jvm9KCt54Ghud9Z3gYm3BIOfDiqU1bu0kRoEgBU4Dygo04KEiw5MUlGwEgT5RS_JrdhNACgMwzOWKTmQkuTAN1ZLdu6Keuny5Xs8_54pZdNaYLdHeaY_b99vo1f0-Wq8XH_GWZWKH4NkFT5URFgaKxGVJhKmnLpiQJlZBUyVpgaSGu86pWmZJYNIqMJJNbJZpKiDF7OPZu_PCzo7DVaxcsdZ3padgFjYpznsX-MXs8C3KQyGWOyCPKj6j1QwieGr3xbm38X4T0wZdudfSlD740oI6-Yub-VG-CNV3jTW9d-A9KFALF4Y3nI0dRyq8jr4N11FuqnY8OdT24M1f2Ox99PQ</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Hetmaniuk, U.</creator><creator>Lehoucq, R.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20061001</creationdate><title>Basis selection in LOBPCG</title><author>Hetmaniuk, U. ; Lehoucq, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-2ab5ee6623fc42e6ab8c7f7e80b38eb8d327c06ab5bd949826f9ea8ea5c93fb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Blocking</topic><topic>Computation</topic><topic>Computational techniques</topic><topic>Convergence</topic><topic>Delay</topic><topic>Exact sciences and technology</topic><topic>LOBPCG</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Optimization</topic><topic>Orthonormalization</topic><topic>Physics</topic><topic>Preconditioned eigensolver</topic><topic>Representations</topic><topic>Symmetric generalized eigenvalue problem</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hetmaniuk, U.</creatorcontrib><creatorcontrib>Lehoucq, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hetmaniuk, U.</au><au>Lehoucq, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Basis selection in LOBPCG</atitle><jtitle>Journal of computational physics</jtitle><date>2006-10-01</date><risdate>2006</risdate><volume>218</volume><issue>1</issue><spage>324</spage><epage>332</epage><pages>324-332</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>The purpose of our paper is to discuss basis selection for Knyazev’s locally optimal block preconditioned conjugate gradient (LOBPCG) method. An inappropriate choice of basis can lead to ill-conditioned Gram matrices in the Rayleigh–Ritz analysis that can delay convergence or produce inaccurate eigenpairs. We demonstrate that the choice of basis is not merely related to computing in finite precision arithmetic. We propose a representation that maintains orthogonality of the basis vectors and so has excellent numerical properties.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2006.02.007</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2006-10, Vol.218 (1), p.324-332 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_29111462 |
source | Elsevier ScienceDirect Journals |
subjects | Blocking Computation Computational techniques Convergence Delay Exact sciences and technology LOBPCG Mathematical analysis Mathematical methods in physics Optimization Orthonormalization Physics Preconditioned eigensolver Representations Symmetric generalized eigenvalue problem Vectors (mathematics) |
title | Basis selection in LOBPCG |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Basis%20selection%20in%20LOBPCG&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Hetmaniuk,%20U.&rft.date=2006-10-01&rft.volume=218&rft.issue=1&rft.spage=324&rft.epage=332&rft.pages=324-332&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2006.02.007&rft_dat=%3Cproquest_cross%3E29111462%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082185221&rft_id=info:pmid/&rft_els_id=S0021999106000866&rfr_iscdi=true |