Carbon nanofibers supported Pt–Ru electrocatalysts for direct methanol fuel cells
Oxidized and reduced carbon nanofibers (OCNF and RCNF) were used as supports to prepare highly dispersed PtRu catalysts for the direct methanol fuel cells (DMFC). The structural and surface features and electrocatalytic properties of bimetallic PtRu/OCNF and PtRu/RCNF were extensively investigated....
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2006, Vol.44 (1), p.152-157 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 157 |
---|---|
container_issue | 1 |
container_start_page | 152 |
container_title | Carbon (New York) |
container_volume | 44 |
creator | Guo, Junsong Sun, Gongquan Wang, Qi Wang, Guoxiong Zhou, Zhenhua Tang, Shuihua Jiang, Luhua Zhou, Bing Xin, Qin |
description | Oxidized and reduced carbon nanofibers (OCNF and RCNF) were used as supports to prepare highly dispersed PtRu catalysts for the direct methanol fuel cells (DMFC). The structural and surface features and electrocatalytic properties of bimetallic PtRu/OCNF and PtRu/RCNF were extensively investigated. FT-IR spectra show that carboxyl groups exist on the surface of the OCNF, which greatly influence the morphology and crystallinity of the electrocatalysts. Transmission electron microscopy and X-ray diffraction consistently show that PtRu/RCNF has a smaller particle size and more uniform distribution than PtRu/OCNF. However, both catalysts have very similar methanol oxidation peak current densities that are significantly lower than commercial catalyst based on current–voltage (CV) results. These two catalysts also give very similar single cell performance except for some difference in the resistance polarization region. The OCNF supported catalysts give better performance than commercial catalysts when current density is higher than 50
mA
cm
−2 in spite of low methanol oxidation peak current density. These results can be ascribed to the specific surface and structural properties of carbon nanofibers. |
doi_str_mv | 10.1016/j.carbon.2005.06.047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29107498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622305003829</els_id><sourcerecordid>29107498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-f3323d7da6329808c2fa9a4367f40f8d662aef39dbb84b2952a0376517f52edf3</originalsourceid><addsrcrecordid>eNp9kMtKxTAQhoMoeLy8gYtsdNc6uZw03Qhy8AaC4mUd0nSCPfQ0x6QV3PkOvqFPYo8V3LkaZvj_f2Y-Qo4Y5AyYOl3mzsYqdDkHmOegcpDFFpkxXYhM6JJtkxkA6ExxLnbJXkrLsZWayRl5XPw4aWe74JsKY6JpWK9D7LGm9_3Xx-fDQLFF18fgbG_b99Qn6kOkdRPHKV1h_zJ6W-oHbKnDtk0HZMfbNuHhb90nz5cXT4vr7Pbu6mZxfps5CbrPvBBc1EVtleClBu24t6WVQhVegte1UtyiF2VdVVpWvJxzC6JQc1b4Ocfai31yMuWuY3gdMPVm1aTNBbbDMCTDSwaFLPUolJPQxZBSRG_WsVnZ-G4YmA1BszQTQbMhaECZkeBoO_7Nt8nZ1kfbuSb9eQuuQAIfdWeTDsdn3xqMJrkGO4cTIlOH5v9F39ePimk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29107498</pqid></control><display><type>article</type><title>Carbon nanofibers supported Pt–Ru electrocatalysts for direct methanol fuel cells</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Guo, Junsong ; Sun, Gongquan ; Wang, Qi ; Wang, Guoxiong ; Zhou, Zhenhua ; Tang, Shuihua ; Jiang, Luhua ; Zhou, Bing ; Xin, Qin</creator><creatorcontrib>Guo, Junsong ; Sun, Gongquan ; Wang, Qi ; Wang, Guoxiong ; Zhou, Zhenhua ; Tang, Shuihua ; Jiang, Luhua ; Zhou, Bing ; Xin, Qin</creatorcontrib><description>Oxidized and reduced carbon nanofibers (OCNF and RCNF) were used as supports to prepare highly dispersed PtRu catalysts for the direct methanol fuel cells (DMFC). The structural and surface features and electrocatalytic properties of bimetallic PtRu/OCNF and PtRu/RCNF were extensively investigated. FT-IR spectra show that carboxyl groups exist on the surface of the OCNF, which greatly influence the morphology and crystallinity of the electrocatalysts. Transmission electron microscopy and X-ray diffraction consistently show that PtRu/RCNF has a smaller particle size and more uniform distribution than PtRu/OCNF. However, both catalysts have very similar methanol oxidation peak current densities that are significantly lower than commercial catalyst based on current–voltage (CV) results. These two catalysts also give very similar single cell performance except for some difference in the resistance polarization region. The OCNF supported catalysts give better performance than commercial catalysts when current density is higher than 50
mA
cm
−2 in spite of low methanol oxidation peak current density. These results can be ascribed to the specific surface and structural properties of carbon nanofibers.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2005.06.047</identifier><identifier>CODEN: CRBNAH</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Carbon nanofibers ; Catalyst support ; Chemistry ; Cross-disciplinary physics: materials science; rheology ; Electrochemistry ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Fullerenes and related materials; diamonds, graphite ; General and physical chemistry ; Kinetics and mechanism of reactions ; Materials science ; Physics ; Specific materials ; Surface properties</subject><ispartof>Carbon (New York), 2006, Vol.44 (1), p.152-157</ispartof><rights>2005 Elsevier Ltd</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-f3323d7da6329808c2fa9a4367f40f8d662aef39dbb84b2952a0376517f52edf3</citedby><cites>FETCH-LOGICAL-c408t-f3323d7da6329808c2fa9a4367f40f8d662aef39dbb84b2952a0376517f52edf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2005.06.047$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17260402$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Junsong</creatorcontrib><creatorcontrib>Sun, Gongquan</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Wang, Guoxiong</creatorcontrib><creatorcontrib>Zhou, Zhenhua</creatorcontrib><creatorcontrib>Tang, Shuihua</creatorcontrib><creatorcontrib>Jiang, Luhua</creatorcontrib><creatorcontrib>Zhou, Bing</creatorcontrib><creatorcontrib>Xin, Qin</creatorcontrib><title>Carbon nanofibers supported Pt–Ru electrocatalysts for direct methanol fuel cells</title><title>Carbon (New York)</title><description>Oxidized and reduced carbon nanofibers (OCNF and RCNF) were used as supports to prepare highly dispersed PtRu catalysts for the direct methanol fuel cells (DMFC). The structural and surface features and electrocatalytic properties of bimetallic PtRu/OCNF and PtRu/RCNF were extensively investigated. FT-IR spectra show that carboxyl groups exist on the surface of the OCNF, which greatly influence the morphology and crystallinity of the electrocatalysts. Transmission electron microscopy and X-ray diffraction consistently show that PtRu/RCNF has a smaller particle size and more uniform distribution than PtRu/OCNF. However, both catalysts have very similar methanol oxidation peak current densities that are significantly lower than commercial catalyst based on current–voltage (CV) results. These two catalysts also give very similar single cell performance except for some difference in the resistance polarization region. The OCNF supported catalysts give better performance than commercial catalysts when current density is higher than 50
mA
cm
−2 in spite of low methanol oxidation peak current density. These results can be ascribed to the specific surface and structural properties of carbon nanofibers.</description><subject>Applied sciences</subject><subject>Carbon nanofibers</subject><subject>Catalyst support</subject><subject>Chemistry</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electrochemistry</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>General and physical chemistry</subject><subject>Kinetics and mechanism of reactions</subject><subject>Materials science</subject><subject>Physics</subject><subject>Specific materials</subject><subject>Surface properties</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxTAQhoMoeLy8gYtsdNc6uZw03Qhy8AaC4mUd0nSCPfQ0x6QV3PkOvqFPYo8V3LkaZvj_f2Y-Qo4Y5AyYOl3mzsYqdDkHmOegcpDFFpkxXYhM6JJtkxkA6ExxLnbJXkrLsZWayRl5XPw4aWe74JsKY6JpWK9D7LGm9_3Xx-fDQLFF18fgbG_b99Qn6kOkdRPHKV1h_zJ6W-oHbKnDtk0HZMfbNuHhb90nz5cXT4vr7Pbu6mZxfps5CbrPvBBc1EVtleClBu24t6WVQhVegte1UtyiF2VdVVpWvJxzC6JQc1b4Ocfai31yMuWuY3gdMPVm1aTNBbbDMCTDSwaFLPUolJPQxZBSRG_WsVnZ-G4YmA1BszQTQbMhaECZkeBoO_7Nt8nZ1kfbuSb9eQuuQAIfdWeTDsdn3xqMJrkGO4cTIlOH5v9F39ePimk</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Guo, Junsong</creator><creator>Sun, Gongquan</creator><creator>Wang, Qi</creator><creator>Wang, Guoxiong</creator><creator>Zhou, Zhenhua</creator><creator>Tang, Shuihua</creator><creator>Jiang, Luhua</creator><creator>Zhou, Bing</creator><creator>Xin, Qin</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>2006</creationdate><title>Carbon nanofibers supported Pt–Ru electrocatalysts for direct methanol fuel cells</title><author>Guo, Junsong ; Sun, Gongquan ; Wang, Qi ; Wang, Guoxiong ; Zhou, Zhenhua ; Tang, Shuihua ; Jiang, Luhua ; Zhou, Bing ; Xin, Qin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-f3323d7da6329808c2fa9a4367f40f8d662aef39dbb84b2952a0376517f52edf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Carbon nanofibers</topic><topic>Catalyst support</topic><topic>Chemistry</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electrochemistry</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>General and physical chemistry</topic><topic>Kinetics and mechanism of reactions</topic><topic>Materials science</topic><topic>Physics</topic><topic>Specific materials</topic><topic>Surface properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Junsong</creatorcontrib><creatorcontrib>Sun, Gongquan</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Wang, Guoxiong</creatorcontrib><creatorcontrib>Zhou, Zhenhua</creatorcontrib><creatorcontrib>Tang, Shuihua</creatorcontrib><creatorcontrib>Jiang, Luhua</creatorcontrib><creatorcontrib>Zhou, Bing</creatorcontrib><creatorcontrib>Xin, Qin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Junsong</au><au>Sun, Gongquan</au><au>Wang, Qi</au><au>Wang, Guoxiong</au><au>Zhou, Zhenhua</au><au>Tang, Shuihua</au><au>Jiang, Luhua</au><au>Zhou, Bing</au><au>Xin, Qin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon nanofibers supported Pt–Ru electrocatalysts for direct methanol fuel cells</atitle><jtitle>Carbon (New York)</jtitle><date>2006</date><risdate>2006</risdate><volume>44</volume><issue>1</issue><spage>152</spage><epage>157</epage><pages>152-157</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><coden>CRBNAH</coden><abstract>Oxidized and reduced carbon nanofibers (OCNF and RCNF) were used as supports to prepare highly dispersed PtRu catalysts for the direct methanol fuel cells (DMFC). The structural and surface features and electrocatalytic properties of bimetallic PtRu/OCNF and PtRu/RCNF were extensively investigated. FT-IR spectra show that carboxyl groups exist on the surface of the OCNF, which greatly influence the morphology and crystallinity of the electrocatalysts. Transmission electron microscopy and X-ray diffraction consistently show that PtRu/RCNF has a smaller particle size and more uniform distribution than PtRu/OCNF. However, both catalysts have very similar methanol oxidation peak current densities that are significantly lower than commercial catalyst based on current–voltage (CV) results. These two catalysts also give very similar single cell performance except for some difference in the resistance polarization region. The OCNF supported catalysts give better performance than commercial catalysts when current density is higher than 50
mA
cm
−2 in spite of low methanol oxidation peak current density. These results can be ascribed to the specific surface and structural properties of carbon nanofibers.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2005.06.047</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2006, Vol.44 (1), p.152-157 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_miscellaneous_29107498 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Carbon nanofibers Catalyst support Chemistry Cross-disciplinary physics: materials science rheology Electrochemistry Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells Fullerenes and related materials diamonds, graphite General and physical chemistry Kinetics and mechanism of reactions Materials science Physics Specific materials Surface properties |
title | Carbon nanofibers supported Pt–Ru electrocatalysts for direct methanol fuel cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20nanofibers%20supported%20Pt%E2%80%93Ru%20electrocatalysts%20for%20direct%20methanol%20fuel%20cells&rft.jtitle=Carbon%20(New%20York)&rft.au=Guo,%20Junsong&rft.date=2006&rft.volume=44&rft.issue=1&rft.spage=152&rft.epage=157&rft.pages=152-157&rft.issn=0008-6223&rft.eissn=1873-3891&rft.coden=CRBNAH&rft_id=info:doi/10.1016/j.carbon.2005.06.047&rft_dat=%3Cproquest_cross%3E29107498%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29107498&rft_id=info:pmid/&rft_els_id=S0008622305003829&rfr_iscdi=true |