Flexible, Biodegradable, and Wireless Magnetoelectric Paper for Simple In Situ Personalization of Bioelectric Implants
Bioelectronic implants delivering electrical stimulation offer an attractive alternative to traditional pharmaceuticals in electrotherapy. However, achieving simple, rapid, and cost‐effective personalization of these implants for customized treatment in unique clinical and physical scenarios present...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-05, Vol.36 (18), p.e2311154-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 18 |
container_start_page | e2311154 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Choe, Jun Kyu Kim, Suntae Lee, Ah‐young Choi, Cholong Cho, Jae‐Hyeon Jo, Wook Song, Myoung Hoon Cha, Chaenyung Kim, Jiyun |
description | Bioelectronic implants delivering electrical stimulation offer an attractive alternative to traditional pharmaceuticals in electrotherapy. However, achieving simple, rapid, and cost‐effective personalization of these implants for customized treatment in unique clinical and physical scenarios presents a substantial challenge. This challenge is further compounded by the need to ensure safety and minimal invasiveness, requiring essential attributes such as flexibility, biocompatibility, lightness, biodegradability, and wireless stimulation capability. Here, a flexible, biodegradable bioelectronic paper with homogeneously distributed wireless stimulation functionality for simple personalization of bioelectronic implants is introduced. The bioelectronic paper synergistically combines i) lead‐free magnetoelectric nanoparticles (MENs) that facilitate electrical stimulation in response to external magnetic field and ii) flexible and biodegradable nanofibers (NFs) that enable localization of MENs for high‐selectivity stimulation, oxygen/nutrient permeation, cell orientation modulation, and biodegradation rate control. The effectiveness of wireless electrical stimulation in vitro through enhanced neuronal differentiation of neuron‐like PC12 cells and the controllability of their microstructural orientation are shown. Also, scalability, design flexibility, and rapid customizability of the bioelectronic paper are shown by creating various 3D macrostructures using simple paper crafting techniques such as cutting and folding. This platform holds promise for simple and rapid personalization of temporary bioelectronic implants for minimally invasive wireless stimulation therapies.
A flexible, biodegradable bioelectronic paper featuring homogeneously distributed wireless stimulation functionality is presented. This paper synergistically combines lead‐free magnetoelectric nanoparticles for external magnetic field‐induced electrical stimulation and flexible, biodegradable nanofibers for high‐selectivity stimulation, oxygen/nutrient permeation, cell orientation modulation, and biodegradation rate control. Scalability, design flexibility, and rapid customizability are demonstrated through simple paper crafting techniques such as origami and kirigami. |
doi_str_mv | 10.1002/adma.202311154 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2910197211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049592471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3734-f53861ad31253a290c122e727db2340afcf58cb82705912c4c5232c7239e90493</originalsourceid><addsrcrecordid>eNqFkUFv1DAQRi0EokvhyhFZ4sKBLJ6xvYmPS6GwUisqAeJoeZ1J5SqJFzsByq_Hy5ZF4sJpZqQ3TzP6GHsKYglC4CvXDm6JAiUAaHWPLUAjVEoYfZ8thJG6MivVnLBHOd8IIcxKrB6yE9lArYyWC_btvKcfYdvTS_46xJauk2vd79GNLf8SEvWUM7901yNNsQx-SsHzK7ejxLuY-Mcw7Hrim7F008yvKOU4uj78dFOII4_d3nvc2xTYjVN-zB50rs_05K6ess_nbz-dva8uPrzbnK0vKi9rqapOy2YFrpWAWjo0wgMi1Vi3W5RKuM53uvHbBmuhDaBXXqNEX6M0ZIQy8pS9OHh3KX6dKU92CNlTX46gOGeLBgSYGgEK-vwf9CbOqbySrSwqbVDVe2p5oHyKOSfq7C6FwaVbC8LuE7H7ROwxkbLw7E47bwdqj_ifCApgDsD30NPtf3R2_eZy_Vf-CzxAlnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049592471</pqid></control><display><type>article</type><title>Flexible, Biodegradable, and Wireless Magnetoelectric Paper for Simple In Situ Personalization of Bioelectric Implants</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Choe, Jun Kyu ; Kim, Suntae ; Lee, Ah‐young ; Choi, Cholong ; Cho, Jae‐Hyeon ; Jo, Wook ; Song, Myoung Hoon ; Cha, Chaenyung ; Kim, Jiyun</creator><creatorcontrib>Choe, Jun Kyu ; Kim, Suntae ; Lee, Ah‐young ; Choi, Cholong ; Cho, Jae‐Hyeon ; Jo, Wook ; Song, Myoung Hoon ; Cha, Chaenyung ; Kim, Jiyun</creatorcontrib><description>Bioelectronic implants delivering electrical stimulation offer an attractive alternative to traditional pharmaceuticals in electrotherapy. However, achieving simple, rapid, and cost‐effective personalization of these implants for customized treatment in unique clinical and physical scenarios presents a substantial challenge. This challenge is further compounded by the need to ensure safety and minimal invasiveness, requiring essential attributes such as flexibility, biocompatibility, lightness, biodegradability, and wireless stimulation capability. Here, a flexible, biodegradable bioelectronic paper with homogeneously distributed wireless stimulation functionality for simple personalization of bioelectronic implants is introduced. The bioelectronic paper synergistically combines i) lead‐free magnetoelectric nanoparticles (MENs) that facilitate electrical stimulation in response to external magnetic field and ii) flexible and biodegradable nanofibers (NFs) that enable localization of MENs for high‐selectivity stimulation, oxygen/nutrient permeation, cell orientation modulation, and biodegradation rate control. The effectiveness of wireless electrical stimulation in vitro through enhanced neuronal differentiation of neuron‐like PC12 cells and the controllability of their microstructural orientation are shown. Also, scalability, design flexibility, and rapid customizability of the bioelectronic paper are shown by creating various 3D macrostructures using simple paper crafting techniques such as cutting and folding. This platform holds promise for simple and rapid personalization of temporary bioelectronic implants for minimally invasive wireless stimulation therapies.
A flexible, biodegradable bioelectronic paper featuring homogeneously distributed wireless stimulation functionality is presented. This paper synergistically combines lead‐free magnetoelectric nanoparticles for external magnetic field‐induced electrical stimulation and flexible, biodegradable nanofibers for high‐selectivity stimulation, oxygen/nutrient permeation, cell orientation modulation, and biodegradation rate control. Scalability, design flexibility, and rapid customizability are demonstrated through simple paper crafting techniques such as origami and kirigami.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202311154</identifier><identifier>PMID: 38174953</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biocompatibility ; biodegradable ; Biodegradation ; Bioelectricity ; bioelectronic implant ; Customization ; Flexibility ; Implants ; magnetoelectric nanoparticle ; nanofiber ; personalization ; Stimulation ; wireless stimulation</subject><ispartof>Advanced materials (Weinheim), 2024-05, Vol.36 (18), p.e2311154-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>This article is protected by copyright. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3734-f53861ad31253a290c122e727db2340afcf58cb82705912c4c5232c7239e90493</citedby><cites>FETCH-LOGICAL-c3734-f53861ad31253a290c122e727db2340afcf58cb82705912c4c5232c7239e90493</cites><orcidid>0000-0001-9756-7254</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202311154$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202311154$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38174953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choe, Jun Kyu</creatorcontrib><creatorcontrib>Kim, Suntae</creatorcontrib><creatorcontrib>Lee, Ah‐young</creatorcontrib><creatorcontrib>Choi, Cholong</creatorcontrib><creatorcontrib>Cho, Jae‐Hyeon</creatorcontrib><creatorcontrib>Jo, Wook</creatorcontrib><creatorcontrib>Song, Myoung Hoon</creatorcontrib><creatorcontrib>Cha, Chaenyung</creatorcontrib><creatorcontrib>Kim, Jiyun</creatorcontrib><title>Flexible, Biodegradable, and Wireless Magnetoelectric Paper for Simple In Situ Personalization of Bioelectric Implants</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Bioelectronic implants delivering electrical stimulation offer an attractive alternative to traditional pharmaceuticals in electrotherapy. However, achieving simple, rapid, and cost‐effective personalization of these implants for customized treatment in unique clinical and physical scenarios presents a substantial challenge. This challenge is further compounded by the need to ensure safety and minimal invasiveness, requiring essential attributes such as flexibility, biocompatibility, lightness, biodegradability, and wireless stimulation capability. Here, a flexible, biodegradable bioelectronic paper with homogeneously distributed wireless stimulation functionality for simple personalization of bioelectronic implants is introduced. The bioelectronic paper synergistically combines i) lead‐free magnetoelectric nanoparticles (MENs) that facilitate electrical stimulation in response to external magnetic field and ii) flexible and biodegradable nanofibers (NFs) that enable localization of MENs for high‐selectivity stimulation, oxygen/nutrient permeation, cell orientation modulation, and biodegradation rate control. The effectiveness of wireless electrical stimulation in vitro through enhanced neuronal differentiation of neuron‐like PC12 cells and the controllability of their microstructural orientation are shown. Also, scalability, design flexibility, and rapid customizability of the bioelectronic paper are shown by creating various 3D macrostructures using simple paper crafting techniques such as cutting and folding. This platform holds promise for simple and rapid personalization of temporary bioelectronic implants for minimally invasive wireless stimulation therapies.
A flexible, biodegradable bioelectronic paper featuring homogeneously distributed wireless stimulation functionality is presented. This paper synergistically combines lead‐free magnetoelectric nanoparticles for external magnetic field‐induced electrical stimulation and flexible, biodegradable nanofibers for high‐selectivity stimulation, oxygen/nutrient permeation, cell orientation modulation, and biodegradation rate control. Scalability, design flexibility, and rapid customizability are demonstrated through simple paper crafting techniques such as origami and kirigami.</description><subject>Biocompatibility</subject><subject>biodegradable</subject><subject>Biodegradation</subject><subject>Bioelectricity</subject><subject>bioelectronic implant</subject><subject>Customization</subject><subject>Flexibility</subject><subject>Implants</subject><subject>magnetoelectric nanoparticle</subject><subject>nanofiber</subject><subject>personalization</subject><subject>Stimulation</subject><subject>wireless stimulation</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQRi0EokvhyhFZ4sKBLJ6xvYmPS6GwUisqAeJoeZ1J5SqJFzsByq_Hy5ZF4sJpZqQ3TzP6GHsKYglC4CvXDm6JAiUAaHWPLUAjVEoYfZ8thJG6MivVnLBHOd8IIcxKrB6yE9lArYyWC_btvKcfYdvTS_46xJauk2vd79GNLf8SEvWUM7901yNNsQx-SsHzK7ejxLuY-Mcw7Hrim7F008yvKOU4uj78dFOII4_d3nvc2xTYjVN-zB50rs_05K6ess_nbz-dva8uPrzbnK0vKi9rqapOy2YFrpWAWjo0wgMi1Vi3W5RKuM53uvHbBmuhDaBXXqNEX6M0ZIQy8pS9OHh3KX6dKU92CNlTX46gOGeLBgSYGgEK-vwf9CbOqbySrSwqbVDVe2p5oHyKOSfq7C6FwaVbC8LuE7H7ROwxkbLw7E47bwdqj_ifCApgDsD30NPtf3R2_eZy_Vf-CzxAlnQ</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Choe, Jun Kyu</creator><creator>Kim, Suntae</creator><creator>Lee, Ah‐young</creator><creator>Choi, Cholong</creator><creator>Cho, Jae‐Hyeon</creator><creator>Jo, Wook</creator><creator>Song, Myoung Hoon</creator><creator>Cha, Chaenyung</creator><creator>Kim, Jiyun</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9756-7254</orcidid></search><sort><creationdate>20240501</creationdate><title>Flexible, Biodegradable, and Wireless Magnetoelectric Paper for Simple In Situ Personalization of Bioelectric Implants</title><author>Choe, Jun Kyu ; Kim, Suntae ; Lee, Ah‐young ; Choi, Cholong ; Cho, Jae‐Hyeon ; Jo, Wook ; Song, Myoung Hoon ; Cha, Chaenyung ; Kim, Jiyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3734-f53861ad31253a290c122e727db2340afcf58cb82705912c4c5232c7239e90493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biocompatibility</topic><topic>biodegradable</topic><topic>Biodegradation</topic><topic>Bioelectricity</topic><topic>bioelectronic implant</topic><topic>Customization</topic><topic>Flexibility</topic><topic>Implants</topic><topic>magnetoelectric nanoparticle</topic><topic>nanofiber</topic><topic>personalization</topic><topic>Stimulation</topic><topic>wireless stimulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choe, Jun Kyu</creatorcontrib><creatorcontrib>Kim, Suntae</creatorcontrib><creatorcontrib>Lee, Ah‐young</creatorcontrib><creatorcontrib>Choi, Cholong</creatorcontrib><creatorcontrib>Cho, Jae‐Hyeon</creatorcontrib><creatorcontrib>Jo, Wook</creatorcontrib><creatorcontrib>Song, Myoung Hoon</creatorcontrib><creatorcontrib>Cha, Chaenyung</creatorcontrib><creatorcontrib>Kim, Jiyun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choe, Jun Kyu</au><au>Kim, Suntae</au><au>Lee, Ah‐young</au><au>Choi, Cholong</au><au>Cho, Jae‐Hyeon</au><au>Jo, Wook</au><au>Song, Myoung Hoon</au><au>Cha, Chaenyung</au><au>Kim, Jiyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible, Biodegradable, and Wireless Magnetoelectric Paper for Simple In Situ Personalization of Bioelectric Implants</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>36</volume><issue>18</issue><spage>e2311154</spage><epage>n/a</epage><pages>e2311154-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Bioelectronic implants delivering electrical stimulation offer an attractive alternative to traditional pharmaceuticals in electrotherapy. However, achieving simple, rapid, and cost‐effective personalization of these implants for customized treatment in unique clinical and physical scenarios presents a substantial challenge. This challenge is further compounded by the need to ensure safety and minimal invasiveness, requiring essential attributes such as flexibility, biocompatibility, lightness, biodegradability, and wireless stimulation capability. Here, a flexible, biodegradable bioelectronic paper with homogeneously distributed wireless stimulation functionality for simple personalization of bioelectronic implants is introduced. The bioelectronic paper synergistically combines i) lead‐free magnetoelectric nanoparticles (MENs) that facilitate electrical stimulation in response to external magnetic field and ii) flexible and biodegradable nanofibers (NFs) that enable localization of MENs for high‐selectivity stimulation, oxygen/nutrient permeation, cell orientation modulation, and biodegradation rate control. The effectiveness of wireless electrical stimulation in vitro through enhanced neuronal differentiation of neuron‐like PC12 cells and the controllability of their microstructural orientation are shown. Also, scalability, design flexibility, and rapid customizability of the bioelectronic paper are shown by creating various 3D macrostructures using simple paper crafting techniques such as cutting and folding. This platform holds promise for simple and rapid personalization of temporary bioelectronic implants for minimally invasive wireless stimulation therapies.
A flexible, biodegradable bioelectronic paper featuring homogeneously distributed wireless stimulation functionality is presented. This paper synergistically combines lead‐free magnetoelectric nanoparticles for external magnetic field‐induced electrical stimulation and flexible, biodegradable nanofibers for high‐selectivity stimulation, oxygen/nutrient permeation, cell orientation modulation, and biodegradation rate control. Scalability, design flexibility, and rapid customizability are demonstrated through simple paper crafting techniques such as origami and kirigami.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38174953</pmid><doi>10.1002/adma.202311154</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9756-7254</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-05, Vol.36 (18), p.e2311154-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2910197211 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Biocompatibility biodegradable Biodegradation Bioelectricity bioelectronic implant Customization Flexibility Implants magnetoelectric nanoparticle nanofiber personalization Stimulation wireless stimulation |
title | Flexible, Biodegradable, and Wireless Magnetoelectric Paper for Simple In Situ Personalization of Bioelectric Implants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A50%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible,%20Biodegradable,%20and%20Wireless%20Magnetoelectric%20Paper%20for%20Simple%20In%20Situ%20Personalization%20of%20Bioelectric%20Implants&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Choe,%20Jun%20Kyu&rft.date=2024-05-01&rft.volume=36&rft.issue=18&rft.spage=e2311154&rft.epage=n/a&rft.pages=e2311154-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202311154&rft_dat=%3Cproquest_cross%3E3049592471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049592471&rft_id=info:pmid/38174953&rfr_iscdi=true |