Investigating the impact of vaccine hesitancy on an emerging infectious disease: a mathematical and numerical analysis
Throughout the last two centuries, vaccines have been helpful in mitigating numerous epidemic diseases. However, vaccine hesitancy has been identified as a substantial obstacle in healthcare management. We examined the epidemiological dynamics of an emerging infection under vaccination using an SVEI...
Gespeichert in:
Veröffentlicht in: | Journal of biological dynamics 2024-12, Vol.18 (1), p.2298988-2298988 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2298988 |
---|---|
container_issue | 1 |
container_start_page | 2298988 |
container_title | Journal of biological dynamics |
container_volume | 18 |
creator | Hewage, Indunil M. Church, Kevin E. M. Schwartz, Elissa J. |
description | Throughout the last two centuries, vaccines have been helpful in mitigating numerous epidemic diseases. However, vaccine hesitancy has been identified as a substantial obstacle in healthcare management. We examined the epidemiological dynamics of an emerging infection under vaccination using an SVEIR model with differential morbidity. We mathematically analyzed the model, derived
$ \mathcal {R}_0 $
R
0
, and provided a complete analysis of the bifurcation at
$ \mathcal {R}_0=1 $
R
0
=
1
. Sensitivity analysis and numerical simulations were used to quantify the tradeoffs between vaccine efficacy and vaccine hesitancy on reducing the disease burden. Our results indicated that if the percentage of the population hesitant about taking the vaccine is 10%, then a vaccine with 94% efficacy is required to reduce the peak of infections by 40%. If 60% of the population is reluctant about being vaccinated, then even a perfect vaccine will not be able to reduce the peak of infections by 40%. |
doi_str_mv | 10.1080/17513758.2023.2298988 |
format | Article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_miscellaneous_2910196996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5264d379088c401e92850897721683d0</doaj_id><sourcerecordid>2910196996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-8173ba8748652d94eae68df2711547ca30917aa5e19de0c87acb63f022ca37b03</originalsourceid><addsrcrecordid>eNp9UUtvEzEQXlWgvuAngHzkkuDH-sUJVLUlUiUucLYm9mzqancd7E1Q_j1ekubIxfaMv8dovqb5wOiSUUM_My2Z0NIsOeViybk11piL5nruL4RW6s35Lc1Vc1PKC6VScq0umythmG610NfNfjXusUxxA1McN2R6RhKHLfiJpI7swfs4InnGEicY_YGkkcBIcMC8meFx7NBPMe0KCbEgFPxCgAxQZeoRPfQVHsi4q4RTBf2hxPKuedtBX_D96b5tfj3c_7z7vnj68bi6-_a08C3X06KOKdZgdGuU5MG2CKhM6LhmTLbag6CWaQCJzAak3mjwayU6ynn902sqbpvVUTckeHHbHAfIB5cgun-NlDcOch20Rye5aoPQlhrjW8rQciOpsVpzpowIs9ano9Y2p9-7ujQ3xOKx72HEugHHLaPMKmtVhcoj1OdUSsbubM2om-Nzr_G5OT53iq_yPp4sdusBw5n1mlcFfD0C6uZTHuBPyn1wExz6lLtcI4rFif97_AV4u6lf</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2910196996</pqid></control><display><type>article</type><title>Investigating the impact of vaccine hesitancy on an emerging infectious disease: a mathematical and numerical analysis</title><source>Taylor & Francis Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hewage, Indunil M. ; Church, Kevin E. M. ; Schwartz, Elissa J.</creator><creatorcontrib>Hewage, Indunil M. ; Church, Kevin E. M. ; Schwartz, Elissa J.</creatorcontrib><description>Throughout the last two centuries, vaccines have been helpful in mitigating numerous epidemic diseases. However, vaccine hesitancy has been identified as a substantial obstacle in healthcare management. We examined the epidemiological dynamics of an emerging infection under vaccination using an SVEIR model with differential morbidity. We mathematically analyzed the model, derived
$ \mathcal {R}_0 $
R
0
, and provided a complete analysis of the bifurcation at
$ \mathcal {R}_0=1 $
R
0
=
1
. Sensitivity analysis and numerical simulations were used to quantify the tradeoffs between vaccine efficacy and vaccine hesitancy on reducing the disease burden. Our results indicated that if the percentage of the population hesitant about taking the vaccine is 10%, then a vaccine with 94% efficacy is required to reduce the peak of infections by 40%. If 60% of the population is reluctant about being vaccinated, then even a perfect vaccine will not be able to reduce the peak of infections by 40%.</description><identifier>ISSN: 1751-3758</identifier><identifier>EISSN: 1751-3766</identifier><identifier>DOI: 10.1080/17513758.2023.2298988</identifier><identifier>PMID: 38174737</identifier><language>eng</language><publisher>England: Taylor & Francis</publisher><subject>92-08 ; 92-10 ; basic reproduction number ; compartmental models & ODEs ; Emerging infections ; forward bifurcations ; vaccine hesitancy</subject><ispartof>Journal of biological dynamics, 2024-12, Vol.18 (1), p.2298988-2298988</ispartof><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c427t-8173ba8748652d94eae68df2711547ca30917aa5e19de0c87acb63f022ca37b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/17513758.2023.2298988$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/17513758.2023.2298988$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27502,27924,27925,59143,59144</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38174737$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hewage, Indunil M.</creatorcontrib><creatorcontrib>Church, Kevin E. M.</creatorcontrib><creatorcontrib>Schwartz, Elissa J.</creatorcontrib><title>Investigating the impact of vaccine hesitancy on an emerging infectious disease: a mathematical and numerical analysis</title><title>Journal of biological dynamics</title><addtitle>J Biol Dyn</addtitle><description>Throughout the last two centuries, vaccines have been helpful in mitigating numerous epidemic diseases. However, vaccine hesitancy has been identified as a substantial obstacle in healthcare management. We examined the epidemiological dynamics of an emerging infection under vaccination using an SVEIR model with differential morbidity. We mathematically analyzed the model, derived
$ \mathcal {R}_0 $
R
0
, and provided a complete analysis of the bifurcation at
$ \mathcal {R}_0=1 $
R
0
=
1
. Sensitivity analysis and numerical simulations were used to quantify the tradeoffs between vaccine efficacy and vaccine hesitancy on reducing the disease burden. Our results indicated that if the percentage of the population hesitant about taking the vaccine is 10%, then a vaccine with 94% efficacy is required to reduce the peak of infections by 40%. If 60% of the population is reluctant about being vaccinated, then even a perfect vaccine will not be able to reduce the peak of infections by 40%.</description><subject>92-08</subject><subject>92-10</subject><subject>basic reproduction number</subject><subject>compartmental models & ODEs</subject><subject>Emerging infections</subject><subject>forward bifurcations</subject><subject>vaccine hesitancy</subject><issn>1751-3758</issn><issn>1751-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9UUtvEzEQXlWgvuAngHzkkuDH-sUJVLUlUiUucLYm9mzqancd7E1Q_j1ekubIxfaMv8dovqb5wOiSUUM_My2Z0NIsOeViybk11piL5nruL4RW6s35Lc1Vc1PKC6VScq0umythmG610NfNfjXusUxxA1McN2R6RhKHLfiJpI7swfs4InnGEicY_YGkkcBIcMC8meFx7NBPMe0KCbEgFPxCgAxQZeoRPfQVHsi4q4RTBf2hxPKuedtBX_D96b5tfj3c_7z7vnj68bi6-_a08C3X06KOKdZgdGuU5MG2CKhM6LhmTLbag6CWaQCJzAak3mjwayU6ynn902sqbpvVUTckeHHbHAfIB5cgun-NlDcOch20Rye5aoPQlhrjW8rQciOpsVpzpowIs9ano9Y2p9-7ujQ3xOKx72HEugHHLaPMKmtVhcoj1OdUSsbubM2om-Nzr_G5OT53iq_yPp4sdusBw5n1mlcFfD0C6uZTHuBPyn1wExz6lLtcI4rFif97_AV4u6lf</recordid><startdate>20241231</startdate><enddate>20241231</enddate><creator>Hewage, Indunil M.</creator><creator>Church, Kevin E. M.</creator><creator>Schwartz, Elissa J.</creator><general>Taylor & Francis</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>20241231</creationdate><title>Investigating the impact of vaccine hesitancy on an emerging infectious disease: a mathematical and numerical analysis</title><author>Hewage, Indunil M. ; Church, Kevin E. M. ; Schwartz, Elissa J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-8173ba8748652d94eae68df2711547ca30917aa5e19de0c87acb63f022ca37b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>92-08</topic><topic>92-10</topic><topic>basic reproduction number</topic><topic>compartmental models & ODEs</topic><topic>Emerging infections</topic><topic>forward bifurcations</topic><topic>vaccine hesitancy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hewage, Indunil M.</creatorcontrib><creatorcontrib>Church, Kevin E. M.</creatorcontrib><creatorcontrib>Schwartz, Elissa J.</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of biological dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hewage, Indunil M.</au><au>Church, Kevin E. M.</au><au>Schwartz, Elissa J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating the impact of vaccine hesitancy on an emerging infectious disease: a mathematical and numerical analysis</atitle><jtitle>Journal of biological dynamics</jtitle><addtitle>J Biol Dyn</addtitle><date>2024-12-31</date><risdate>2024</risdate><volume>18</volume><issue>1</issue><spage>2298988</spage><epage>2298988</epage><pages>2298988-2298988</pages><issn>1751-3758</issn><eissn>1751-3766</eissn><abstract>Throughout the last two centuries, vaccines have been helpful in mitigating numerous epidemic diseases. However, vaccine hesitancy has been identified as a substantial obstacle in healthcare management. We examined the epidemiological dynamics of an emerging infection under vaccination using an SVEIR model with differential morbidity. We mathematically analyzed the model, derived
$ \mathcal {R}_0 $
R
0
, and provided a complete analysis of the bifurcation at
$ \mathcal {R}_0=1 $
R
0
=
1
. Sensitivity analysis and numerical simulations were used to quantify the tradeoffs between vaccine efficacy and vaccine hesitancy on reducing the disease burden. Our results indicated that if the percentage of the population hesitant about taking the vaccine is 10%, then a vaccine with 94% efficacy is required to reduce the peak of infections by 40%. If 60% of the population is reluctant about being vaccinated, then even a perfect vaccine will not be able to reduce the peak of infections by 40%.</abstract><cop>England</cop><pub>Taylor & Francis</pub><pmid>38174737</pmid><doi>10.1080/17513758.2023.2298988</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-3758 |
ispartof | Journal of biological dynamics, 2024-12, Vol.18 (1), p.2298988-2298988 |
issn | 1751-3758 1751-3766 |
language | eng |
recordid | cdi_proquest_miscellaneous_2910196996 |
source | Taylor & Francis Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | 92-08 92-10 basic reproduction number compartmental models & ODEs Emerging infections forward bifurcations vaccine hesitancy |
title | Investigating the impact of vaccine hesitancy on an emerging infectious disease: a mathematical and numerical analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A59%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20the%20impact%20of%20vaccine%20hesitancy%20on%20an%20emerging%20infectious%20disease:%20a%20mathematical%20and%20numerical%20analysis&rft.jtitle=Journal%20of%20biological%20dynamics&rft.au=Hewage,%20Indunil%20M.&rft.date=2024-12-31&rft.volume=18&rft.issue=1&rft.spage=2298988&rft.epage=2298988&rft.pages=2298988-2298988&rft.issn=1751-3758&rft.eissn=1751-3766&rft_id=info:doi/10.1080/17513758.2023.2298988&rft_dat=%3Cproquest_infor%3E2910196996%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2910196996&rft_id=info:pmid/38174737&rft_doaj_id=oai_doaj_org_article_5264d379088c401e92850897721683d0&rfr_iscdi=true |