Carboxylate Shift Dynamics in Biomimetic Co2(μ–OH)2 Complexes

Carboxylate shift mechanisms provide low-energy pathways to accommodate changes in oxidation state and coordination number required during catalysis in metalloenzyme active sites. These processes are challenging to observe in their native enzymes and molecular models can provide insight into their m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2024-01, Vol.63 (2), p.1109-1118
Hauptverfasser: DeLucia, Alyssa A., Olshansky, Lisa
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1118
container_issue 2
container_start_page 1109
container_title Inorganic chemistry
container_volume 63
creator DeLucia, Alyssa A.
Olshansky, Lisa
description Carboxylate shift mechanisms provide low-energy pathways to accommodate changes in oxidation state and coordination number required during catalysis in metalloenzyme active sites. These processes are challenging to observe in their native enzymes and molecular models can provide insight into their mechanistic details. We report here the direct observation of a carboxylate shift reaction in biomimetic yet structurally stable dicobalt complexes featuring both monodentate and bridging acetate ligands, as well as intramolecular hydrogen-bonding interactions. Subjecting the series of complexes [Co2(μ–OH)2(μ–1,3-OAc)­(κ-OAc)2(pyR)4]­PF6 ([1 R ]­PF6, OAc = acetate, pyR = pyridine with para-R substituents: OMe, H, or CN) to a Lewis acid triggers conversion of a monodentate acetate to a μ–1,3 bridging mode, forming [Co2(μ–OH)­2­(μ–1,3-OAc)2(pyR)4]2+ ([2 R ]2+). [2 R ]2+ is susceptible to solvent binding, affording [Co2(μ–OH)2(μ–1,3-OAc)­(κ-OAc)­(MeCN)­(pyR)4]2+ ([3 R ]2+) in MeCN. These reaction products and intermediates were isolated and characterized in the solid state by isotopic labeling and Fourier transform infrared (FTIR) spectroscopy, as well as by X-ray diffraction. The kinetics of the formation and decay of [1 R ]+, [2 R ]2+, and [3 R ]2+ were also examined in situ by 1H-NMR spectroscopy to provide a kinetic model for the carboxylate shift reaction. The rate constants extracted from global fit analyses of these reactions increase with increasing electron donation from R. Leveraging robust diamagnetic CoIII complexes, these studies provide mechanistic details of carboxylate shift reactivity and highlight the utility of ligand dynamicity in mediating the transient formation of unstable metal complexes.
doi_str_mv 10.1021/acs.inorgchem.3c03470
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2910196004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2910196004</sourcerecordid><originalsourceid>FETCH-LOGICAL-a230t-aa365f61edaa566881edf010964653ef99cb65dbff30ad37735d8807cd0c25373</originalsourceid><addsrcrecordid>eNo9kEFOwzAURC0EEqVwBKQsyyLl246deAekQJEqdQFI7CzXsamrJC5xIrU77sB1OAOH4CSkasXqzx-NRqOH0CWGMQaCr5UOY1f75l0vTTWmGmiSwhEaYEYgZhjejtEAoNeYc3GKzkJYAYCgCR-gm1w1C7_Zlqo10fPS2TaabGtVOR0iV0d3zleuMq3TUe7J6Of79_NrPr0i_VetS7Mx4RydWFUGc3G4Q_T6cP-ST-PZ_PEpv53FilBoY6UoZ5ZjUyjFOM-yXlnAIHjCGTVWCL3grFhYS0EVNE0pK7IMUl2AJoymdIhG-9514z86E1pZuaBNWara-C5IIjBgwQGSPor30R6MXPmuqfthEoPc0ZI785-WPNCif7zeYcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2910196004</pqid></control><display><type>article</type><title>Carboxylate Shift Dynamics in Biomimetic Co2(μ–OH)2 Complexes</title><source>ACS Publications</source><creator>DeLucia, Alyssa A. ; Olshansky, Lisa</creator><creatorcontrib>DeLucia, Alyssa A. ; Olshansky, Lisa</creatorcontrib><description>Carboxylate shift mechanisms provide low-energy pathways to accommodate changes in oxidation state and coordination number required during catalysis in metalloenzyme active sites. These processes are challenging to observe in their native enzymes and molecular models can provide insight into their mechanistic details. We report here the direct observation of a carboxylate shift reaction in biomimetic yet structurally stable dicobalt complexes featuring both monodentate and bridging acetate ligands, as well as intramolecular hydrogen-bonding interactions. Subjecting the series of complexes [Co2(μ–OH)2(μ–1,3-OAc)­(κ-OAc)2(pyR)4]­PF6 ([1 R ]­PF6, OAc = acetate, pyR = pyridine with para-R substituents: OMe, H, or CN) to a Lewis acid triggers conversion of a monodentate acetate to a μ–1,3 bridging mode, forming [Co2(μ–OH)­2­(μ–1,3-OAc)2(pyR)4]2+ ([2 R ]2+). [2 R ]2+ is susceptible to solvent binding, affording [Co2(μ–OH)2(μ–1,3-OAc)­(κ-OAc)­(MeCN)­(pyR)4]2+ ([3 R ]2+) in MeCN. These reaction products and intermediates were isolated and characterized in the solid state by isotopic labeling and Fourier transform infrared (FTIR) spectroscopy, as well as by X-ray diffraction. The kinetics of the formation and decay of [1 R ]+, [2 R ]2+, and [3 R ]2+ were also examined in situ by 1H-NMR spectroscopy to provide a kinetic model for the carboxylate shift reaction. The rate constants extracted from global fit analyses of these reactions increase with increasing electron donation from R. Leveraging robust diamagnetic CoIII complexes, these studies provide mechanistic details of carboxylate shift reactivity and highlight the utility of ligand dynamicity in mediating the transient formation of unstable metal complexes.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/acs.inorgchem.3c03470</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Inorganic chemistry, 2024-01, Vol.63 (2), p.1109-1118</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1076-9318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.inorgchem.3c03470$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.inorgchem.3c03470$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>DeLucia, Alyssa A.</creatorcontrib><creatorcontrib>Olshansky, Lisa</creatorcontrib><title>Carboxylate Shift Dynamics in Biomimetic Co2(μ–OH)2 Complexes</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>Carboxylate shift mechanisms provide low-energy pathways to accommodate changes in oxidation state and coordination number required during catalysis in metalloenzyme active sites. These processes are challenging to observe in their native enzymes and molecular models can provide insight into their mechanistic details. We report here the direct observation of a carboxylate shift reaction in biomimetic yet structurally stable dicobalt complexes featuring both monodentate and bridging acetate ligands, as well as intramolecular hydrogen-bonding interactions. Subjecting the series of complexes [Co2(μ–OH)2(μ–1,3-OAc)­(κ-OAc)2(pyR)4]­PF6 ([1 R ]­PF6, OAc = acetate, pyR = pyridine with para-R substituents: OMe, H, or CN) to a Lewis acid triggers conversion of a monodentate acetate to a μ–1,3 bridging mode, forming [Co2(μ–OH)­2­(μ–1,3-OAc)2(pyR)4]2+ ([2 R ]2+). [2 R ]2+ is susceptible to solvent binding, affording [Co2(μ–OH)2(μ–1,3-OAc)­(κ-OAc)­(MeCN)­(pyR)4]2+ ([3 R ]2+) in MeCN. These reaction products and intermediates were isolated and characterized in the solid state by isotopic labeling and Fourier transform infrared (FTIR) spectroscopy, as well as by X-ray diffraction. The kinetics of the formation and decay of [1 R ]+, [2 R ]2+, and [3 R ]2+ were also examined in situ by 1H-NMR spectroscopy to provide a kinetic model for the carboxylate shift reaction. The rate constants extracted from global fit analyses of these reactions increase with increasing electron donation from R. Leveraging robust diamagnetic CoIII complexes, these studies provide mechanistic details of carboxylate shift reactivity and highlight the utility of ligand dynamicity in mediating the transient formation of unstable metal complexes.</description><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kEFOwzAURC0EEqVwBKQsyyLl246deAekQJEqdQFI7CzXsamrJC5xIrU77sB1OAOH4CSkasXqzx-NRqOH0CWGMQaCr5UOY1f75l0vTTWmGmiSwhEaYEYgZhjejtEAoNeYc3GKzkJYAYCgCR-gm1w1C7_Zlqo10fPS2TaabGtVOR0iV0d3zleuMq3TUe7J6Of79_NrPr0i_VetS7Mx4RydWFUGc3G4Q_T6cP-ST-PZ_PEpv53FilBoY6UoZ5ZjUyjFOM-yXlnAIHjCGTVWCL3grFhYS0EVNE0pK7IMUl2AJoymdIhG-9514z86E1pZuaBNWara-C5IIjBgwQGSPor30R6MXPmuqfthEoPc0ZI785-WPNCif7zeYcQ</recordid><startdate>20240115</startdate><enddate>20240115</enddate><creator>DeLucia, Alyssa A.</creator><creator>Olshansky, Lisa</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1076-9318</orcidid></search><sort><creationdate>20240115</creationdate><title>Carboxylate Shift Dynamics in Biomimetic Co2(μ–OH)2 Complexes</title><author>DeLucia, Alyssa A. ; Olshansky, Lisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a230t-aa365f61edaa566881edf010964653ef99cb65dbff30ad37735d8807cd0c25373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DeLucia, Alyssa A.</creatorcontrib><creatorcontrib>Olshansky, Lisa</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DeLucia, Alyssa A.</au><au>Olshansky, Lisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carboxylate Shift Dynamics in Biomimetic Co2(μ–OH)2 Complexes</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2024-01-15</date><risdate>2024</risdate><volume>63</volume><issue>2</issue><spage>1109</spage><epage>1118</epage><pages>1109-1118</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>Carboxylate shift mechanisms provide low-energy pathways to accommodate changes in oxidation state and coordination number required during catalysis in metalloenzyme active sites. These processes are challenging to observe in their native enzymes and molecular models can provide insight into their mechanistic details. We report here the direct observation of a carboxylate shift reaction in biomimetic yet structurally stable dicobalt complexes featuring both monodentate and bridging acetate ligands, as well as intramolecular hydrogen-bonding interactions. Subjecting the series of complexes [Co2(μ–OH)2(μ–1,3-OAc)­(κ-OAc)2(pyR)4]­PF6 ([1 R ]­PF6, OAc = acetate, pyR = pyridine with para-R substituents: OMe, H, or CN) to a Lewis acid triggers conversion of a monodentate acetate to a μ–1,3 bridging mode, forming [Co2(μ–OH)­2­(μ–1,3-OAc)2(pyR)4]2+ ([2 R ]2+). [2 R ]2+ is susceptible to solvent binding, affording [Co2(μ–OH)2(μ–1,3-OAc)­(κ-OAc)­(MeCN)­(pyR)4]2+ ([3 R ]2+) in MeCN. These reaction products and intermediates were isolated and characterized in the solid state by isotopic labeling and Fourier transform infrared (FTIR) spectroscopy, as well as by X-ray diffraction. The kinetics of the formation and decay of [1 R ]+, [2 R ]2+, and [3 R ]2+ were also examined in situ by 1H-NMR spectroscopy to provide a kinetic model for the carboxylate shift reaction. The rate constants extracted from global fit analyses of these reactions increase with increasing electron donation from R. Leveraging robust diamagnetic CoIII complexes, these studies provide mechanistic details of carboxylate shift reactivity and highlight the utility of ligand dynamicity in mediating the transient formation of unstable metal complexes.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.inorgchem.3c03470</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1076-9318</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-1669
ispartof Inorganic chemistry, 2024-01, Vol.63 (2), p.1109-1118
issn 0020-1669
1520-510X
language eng
recordid cdi_proquest_miscellaneous_2910196004
source ACS Publications
title Carboxylate Shift Dynamics in Biomimetic Co2(μ–OH)2 Complexes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A21%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carboxylate%20Shift%20Dynamics%20in%20Biomimetic%20Co2(%CE%BC%E2%80%93OH)2%20Complexes&rft.jtitle=Inorganic%20chemistry&rft.au=DeLucia,%20Alyssa%20A.&rft.date=2024-01-15&rft.volume=63&rft.issue=2&rft.spage=1109&rft.epage=1118&rft.pages=1109-1118&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/acs.inorgchem.3c03470&rft_dat=%3Cproquest_acs_j%3E2910196004%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2910196004&rft_id=info:pmid/&rfr_iscdi=true