Analysis of N‐ and O‐linked site‐specific glycosylation by ion mobility mass spectrometry: State of the art and future directions
Glycosylation, the major post‐translational modification of proteins, significantly increases the diversity of proteoforms. Glycans are involved in a variety of pivotal structural and functional roles of proteins, and changes in glycosylation are profoundly connected to the progression of numerous d...
Gespeichert in:
Veröffentlicht in: | Proteomics (Weinheim) 2024-06, Vol.24 (12-13), p.e2300281-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12-13 |
container_start_page | e2300281 |
container_title | Proteomics (Weinheim) |
container_volume | 24 |
creator | Girgis, Michael Petruncio, Gregory Russo, Paul Peyton, Steven Paige, Mikell Campos, Diana Sanda, Miloslav |
description | Glycosylation, the major post‐translational modification of proteins, significantly increases the diversity of proteoforms. Glycans are involved in a variety of pivotal structural and functional roles of proteins, and changes in glycosylation are profoundly connected to the progression of numerous diseases. Mass spectrometry (MS) has emerged as the gold standard for glycan and glycopeptide analysis because of its high sensitivity and the wealth of fragmentation information that can be obtained. Various separation techniques have been employed to resolve glycan and glycopeptide isomers at the front end of the MS. However, differentiating structures of isobaric and isomeric glycopeptides constitutes a challenge in MS‐based characterization. Many reports described the use of various ion mobility–mass spectrometry (IM–MS) techniques for glycomic analyses. Nevertheless, very few studies have focused on N‐ and O‐linked site‐specific glycopeptidomic analysis. Unlike glycomics, glycoproteomics presents a multitude of inherent challenges in microheterogeneity, which are further exacerbated by the lack of dedicated bioinformatics tools. In this review, we cover recent advances made towards the growing field of site‐specific glycosylation analysis using IM–MS with a specific emphasis on the MS techniques and capabilities in resolving isomeric peptidoglycan structures. Furthermore, we discuss commonly used software that supports IM–MS data analysis of glycopeptides. |
doi_str_mv | 10.1002/pmic.202300281 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2910193507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2910193507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4095-7a8502bfb897ff4df857a59946a2445122016a6b7df4af206b21ad910e7b63cc3</originalsourceid><addsrcrecordid>eNqFkTtvFDEURi0EIiHQUiJLNDS7-DF-0UWrAJECQQJqy-OxwcEzXmyP0HR0tPxGfgkeNmxBQ3XvlY6Pr_0B8BijLUaIPN-PwW4JIrQNEt8Bp5hjtlGS47vHntET8KCUG4SwkErcBydUYoGlUKfgx_lk4lJCgcnDt7--_4RmGuB1a2KYvrgBllBdm8re2eCDhZ_iYlNZoqkhTbBf4FrG1IcY6gJHUwpc2ZrT6GpeXsD31VS32utnB02ufy7wc52zg0PIDW2G8hDc8yYW9-i2noGPLy8-7F5vrq5fXe7Orza2Q4pthJEMkd737R3ed4OXTBimVMcN6TqGCUGYG96LwXfGE8R7gs2gMHKi59RaegaeHbz7nL7OrlQ9hmJdjGZyaS6aNBYrypBo6NN_0Js05_ZdRVPEJeFCMtWo7YGyOZWSndf7HEaTF42RXiPSa0T6GFE78ORWO_ejG47430wawA7AtxDd8h-dfvfmcodpW4X-BpGdoLI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068267859</pqid></control><display><type>article</type><title>Analysis of N‐ and O‐linked site‐specific glycosylation by ion mobility mass spectrometry: State of the art and future directions</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Girgis, Michael ; Petruncio, Gregory ; Russo, Paul ; Peyton, Steven ; Paige, Mikell ; Campos, Diana ; Sanda, Miloslav</creator><creatorcontrib>Girgis, Michael ; Petruncio, Gregory ; Russo, Paul ; Peyton, Steven ; Paige, Mikell ; Campos, Diana ; Sanda, Miloslav</creatorcontrib><description>Glycosylation, the major post‐translational modification of proteins, significantly increases the diversity of proteoforms. Glycans are involved in a variety of pivotal structural and functional roles of proteins, and changes in glycosylation are profoundly connected to the progression of numerous diseases. Mass spectrometry (MS) has emerged as the gold standard for glycan and glycopeptide analysis because of its high sensitivity and the wealth of fragmentation information that can be obtained. Various separation techniques have been employed to resolve glycan and glycopeptide isomers at the front end of the MS. However, differentiating structures of isobaric and isomeric glycopeptides constitutes a challenge in MS‐based characterization. Many reports described the use of various ion mobility–mass spectrometry (IM–MS) techniques for glycomic analyses. Nevertheless, very few studies have focused on N‐ and O‐linked site‐specific glycopeptidomic analysis. Unlike glycomics, glycoproteomics presents a multitude of inherent challenges in microheterogeneity, which are further exacerbated by the lack of dedicated bioinformatics tools. In this review, we cover recent advances made towards the growing field of site‐specific glycosylation analysis using IM–MS with a specific emphasis on the MS techniques and capabilities in resolving isomeric peptidoglycan structures. Furthermore, we discuss commonly used software that supports IM–MS data analysis of glycopeptides.</description><identifier>ISSN: 1615-9853</identifier><identifier>ISSN: 1615-9861</identifier><identifier>EISSN: 1615-9861</identifier><identifier>DOI: 10.1002/pmic.202300281</identifier><identifier>PMID: 38171879</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Bioinformatics ; Data analysis ; Glycan ; Glycopeptides ; glycoproteomics ; Glycosylation ; ion mobility–mass spectrometry ; Ionic mobility ; Isomers ; Mass spectrometry ; Mass spectroscopy ; Microheterogeneity ; Mobility ; Peptidoglycans ; Polysaccharides ; post‐translational modification ; Proteins ; Scientific imaging ; separation of isomers ; Separation techniques ; Structure-function relationships</subject><ispartof>Proteomics (Weinheim), 2024-06, Vol.24 (12-13), p.e2300281-n/a</ispartof><rights>2024 The Authors. published by Wiley‐VCH GmbH.</rights><rights>2024 The Authors. Proteomics published by Wiley-VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 The Authors. PROTEOMICS published by Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4095-7a8502bfb897ff4df857a59946a2445122016a6b7df4af206b21ad910e7b63cc3</citedby><cites>FETCH-LOGICAL-c4095-7a8502bfb897ff4df857a59946a2445122016a6b7df4af206b21ad910e7b63cc3</cites><orcidid>0000-0002-7735-3635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpmic.202300281$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpmic.202300281$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38171879$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Girgis, Michael</creatorcontrib><creatorcontrib>Petruncio, Gregory</creatorcontrib><creatorcontrib>Russo, Paul</creatorcontrib><creatorcontrib>Peyton, Steven</creatorcontrib><creatorcontrib>Paige, Mikell</creatorcontrib><creatorcontrib>Campos, Diana</creatorcontrib><creatorcontrib>Sanda, Miloslav</creatorcontrib><title>Analysis of N‐ and O‐linked site‐specific glycosylation by ion mobility mass spectrometry: State of the art and future directions</title><title>Proteomics (Weinheim)</title><addtitle>Proteomics</addtitle><description>Glycosylation, the major post‐translational modification of proteins, significantly increases the diversity of proteoforms. Glycans are involved in a variety of pivotal structural and functional roles of proteins, and changes in glycosylation are profoundly connected to the progression of numerous diseases. Mass spectrometry (MS) has emerged as the gold standard for glycan and glycopeptide analysis because of its high sensitivity and the wealth of fragmentation information that can be obtained. Various separation techniques have been employed to resolve glycan and glycopeptide isomers at the front end of the MS. However, differentiating structures of isobaric and isomeric glycopeptides constitutes a challenge in MS‐based characterization. Many reports described the use of various ion mobility–mass spectrometry (IM–MS) techniques for glycomic analyses. Nevertheless, very few studies have focused on N‐ and O‐linked site‐specific glycopeptidomic analysis. Unlike glycomics, glycoproteomics presents a multitude of inherent challenges in microheterogeneity, which are further exacerbated by the lack of dedicated bioinformatics tools. In this review, we cover recent advances made towards the growing field of site‐specific glycosylation analysis using IM–MS with a specific emphasis on the MS techniques and capabilities in resolving isomeric peptidoglycan structures. Furthermore, we discuss commonly used software that supports IM–MS data analysis of glycopeptides.</description><subject>Bioinformatics</subject><subject>Data analysis</subject><subject>Glycan</subject><subject>Glycopeptides</subject><subject>glycoproteomics</subject><subject>Glycosylation</subject><subject>ion mobility–mass spectrometry</subject><subject>Ionic mobility</subject><subject>Isomers</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Microheterogeneity</subject><subject>Mobility</subject><subject>Peptidoglycans</subject><subject>Polysaccharides</subject><subject>post‐translational modification</subject><subject>Proteins</subject><subject>Scientific imaging</subject><subject>separation of isomers</subject><subject>Separation techniques</subject><subject>Structure-function relationships</subject><issn>1615-9853</issn><issn>1615-9861</issn><issn>1615-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkTtvFDEURi0EIiHQUiJLNDS7-DF-0UWrAJECQQJqy-OxwcEzXmyP0HR0tPxGfgkeNmxBQ3XvlY6Pr_0B8BijLUaIPN-PwW4JIrQNEt8Bp5hjtlGS47vHntET8KCUG4SwkErcBydUYoGlUKfgx_lk4lJCgcnDt7--_4RmGuB1a2KYvrgBllBdm8re2eCDhZ_iYlNZoqkhTbBf4FrG1IcY6gJHUwpc2ZrT6GpeXsD31VS32utnB02ufy7wc52zg0PIDW2G8hDc8yYW9-i2noGPLy8-7F5vrq5fXe7Orza2Q4pthJEMkd737R3ed4OXTBimVMcN6TqGCUGYG96LwXfGE8R7gs2gMHKi59RaegaeHbz7nL7OrlQ9hmJdjGZyaS6aNBYrypBo6NN_0Js05_ZdRVPEJeFCMtWo7YGyOZWSndf7HEaTF42RXiPSa0T6GFE78ORWO_ejG47430wawA7AtxDd8h-dfvfmcodpW4X-BpGdoLI</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Girgis, Michael</creator><creator>Petruncio, Gregory</creator><creator>Russo, Paul</creator><creator>Peyton, Steven</creator><creator>Paige, Mikell</creator><creator>Campos, Diana</creator><creator>Sanda, Miloslav</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7735-3635</orcidid></search><sort><creationdate>202406</creationdate><title>Analysis of N‐ and O‐linked site‐specific glycosylation by ion mobility mass spectrometry: State of the art and future directions</title><author>Girgis, Michael ; Petruncio, Gregory ; Russo, Paul ; Peyton, Steven ; Paige, Mikell ; Campos, Diana ; Sanda, Miloslav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4095-7a8502bfb897ff4df857a59946a2445122016a6b7df4af206b21ad910e7b63cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bioinformatics</topic><topic>Data analysis</topic><topic>Glycan</topic><topic>Glycopeptides</topic><topic>glycoproteomics</topic><topic>Glycosylation</topic><topic>ion mobility–mass spectrometry</topic><topic>Ionic mobility</topic><topic>Isomers</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Microheterogeneity</topic><topic>Mobility</topic><topic>Peptidoglycans</topic><topic>Polysaccharides</topic><topic>post‐translational modification</topic><topic>Proteins</topic><topic>Scientific imaging</topic><topic>separation of isomers</topic><topic>Separation techniques</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Girgis, Michael</creatorcontrib><creatorcontrib>Petruncio, Gregory</creatorcontrib><creatorcontrib>Russo, Paul</creatorcontrib><creatorcontrib>Peyton, Steven</creatorcontrib><creatorcontrib>Paige, Mikell</creatorcontrib><creatorcontrib>Campos, Diana</creatorcontrib><creatorcontrib>Sanda, Miloslav</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proteomics (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Girgis, Michael</au><au>Petruncio, Gregory</au><au>Russo, Paul</au><au>Peyton, Steven</au><au>Paige, Mikell</au><au>Campos, Diana</au><au>Sanda, Miloslav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of N‐ and O‐linked site‐specific glycosylation by ion mobility mass spectrometry: State of the art and future directions</atitle><jtitle>Proteomics (Weinheim)</jtitle><addtitle>Proteomics</addtitle><date>2024-06</date><risdate>2024</risdate><volume>24</volume><issue>12-13</issue><spage>e2300281</spage><epage>n/a</epage><pages>e2300281-n/a</pages><issn>1615-9853</issn><issn>1615-9861</issn><eissn>1615-9861</eissn><abstract>Glycosylation, the major post‐translational modification of proteins, significantly increases the diversity of proteoforms. Glycans are involved in a variety of pivotal structural and functional roles of proteins, and changes in glycosylation are profoundly connected to the progression of numerous diseases. Mass spectrometry (MS) has emerged as the gold standard for glycan and glycopeptide analysis because of its high sensitivity and the wealth of fragmentation information that can be obtained. Various separation techniques have been employed to resolve glycan and glycopeptide isomers at the front end of the MS. However, differentiating structures of isobaric and isomeric glycopeptides constitutes a challenge in MS‐based characterization. Many reports described the use of various ion mobility–mass spectrometry (IM–MS) techniques for glycomic analyses. Nevertheless, very few studies have focused on N‐ and O‐linked site‐specific glycopeptidomic analysis. Unlike glycomics, glycoproteomics presents a multitude of inherent challenges in microheterogeneity, which are further exacerbated by the lack of dedicated bioinformatics tools. In this review, we cover recent advances made towards the growing field of site‐specific glycosylation analysis using IM–MS with a specific emphasis on the MS techniques and capabilities in resolving isomeric peptidoglycan structures. Furthermore, we discuss commonly used software that supports IM–MS data analysis of glycopeptides.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38171879</pmid><doi>10.1002/pmic.202300281</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-7735-3635</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-9853 |
ispartof | Proteomics (Weinheim), 2024-06, Vol.24 (12-13), p.e2300281-n/a |
issn | 1615-9853 1615-9861 1615-9861 |
language | eng |
recordid | cdi_proquest_miscellaneous_2910193507 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Bioinformatics Data analysis Glycan Glycopeptides glycoproteomics Glycosylation ion mobility–mass spectrometry Ionic mobility Isomers Mass spectrometry Mass spectroscopy Microheterogeneity Mobility Peptidoglycans Polysaccharides post‐translational modification Proteins Scientific imaging separation of isomers Separation techniques Structure-function relationships |
title | Analysis of N‐ and O‐linked site‐specific glycosylation by ion mobility mass spectrometry: State of the art and future directions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A14%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20N%E2%80%90%20and%20O%E2%80%90linked%20site%E2%80%90specific%20glycosylation%20by%20ion%20mobility%20mass%20spectrometry:%20State%20of%20the%20art%20and%20future%20directions&rft.jtitle=Proteomics%20(Weinheim)&rft.au=Girgis,%20Michael&rft.date=2024-06&rft.volume=24&rft.issue=12-13&rft.spage=e2300281&rft.epage=n/a&rft.pages=e2300281-n/a&rft.issn=1615-9853&rft.eissn=1615-9861&rft_id=info:doi/10.1002/pmic.202300281&rft_dat=%3Cproquest_cross%3E2910193507%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068267859&rft_id=info:pmid/38171879&rfr_iscdi=true |