1-Norm-based regularization scheme for system identification of structures with discontinuous system parameters
This paper presents a new class of regularization functions and the associated regularization scheme for structural system identification. In particular, 1‐norm regularization functions are investigated to overcome the smearing effect of 2‐norm regularization functions for the identification of disc...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2007-01, Vol.69 (3), p.504-523 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 523 |
---|---|
container_issue | 3 |
container_start_page | 504 |
container_title | International journal for numerical methods in engineering |
container_volume | 69 |
creator | Park, Hyun Woo Park, Man Woo Ahn, Byeong Kyu Lee, Hae Sung |
description | This paper presents a new class of regularization functions and the associated regularization scheme for structural system identification. In particular, 1‐norm regularization functions are investigated to overcome the smearing effect of 2‐norm regularization functions for the identification of discontinuous system parameters of structures. The truncated singular value decomposition is employed to filter out noise‐polluted solution components and to impose the 1‐norm regularization function on SI. The bilinear fitting method is proposed for selecting an optimal truncation number of the truncated singular value decomposition. The validity of the proposed method is demonstrated through the identification of an inclusion in a square plate and damaged members in a two‐span truss. Copyright © 2006 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nme.1778 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29100645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082191877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3978-952b2cc19dd420f86d4ec4ea89714469e0233e42fadd99ace73cdc1abd563d33</originalsourceid><addsrcrecordid>eNp90E1P3DAQBmALtRLbLRI_IRdQLwF_JHF8RJTSimV76Aq4WV57Am6TePEkottfX692gRMcRj7M41ejl5BDRk8Ypfy07-CESVnvkQmjSuaUU_mBTNJK5aWq2T75hPibUsZKKiYksHweYpcvDYLLItyPrYn-nxl86DO0D9BB1oSY4RoH6DLvoB984-0WhCbDIY52GCNg9uSHh8x5tCGZfgwjPn9bmWg6GCDiZ_KxMS3Cwe6dksW3i8X593z28_LH-dkst0LJOlclX3JrmXKu4LSpK1eALcDUSrKiqBRQLgQUvDHOKWUsSGGdZWbpyko4IabkeBu7iuFxBBx0l-6CtjU9pLs0V6msqigT_PIuZLTmTLFayldqY0CM0OhV9J2J64T0pnuduteb7hM92qUatKZtoumtx1dfCyk2MyX51j35FtZv5un59cUud-d9qvXvizfxj66kkKW-nV_qrzclLa5-3Wkp_gMQOaQ7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082191877</pqid></control><display><type>article</type><title>1-Norm-based regularization scheme for system identification of structures with discontinuous system parameters</title><source>Wiley Online Library</source><creator>Park, Hyun Woo ; Park, Man Woo ; Ahn, Byeong Kyu ; Lee, Hae Sung</creator><creatorcontrib>Park, Hyun Woo ; Park, Man Woo ; Ahn, Byeong Kyu ; Lee, Hae Sung</creatorcontrib><description>This paper presents a new class of regularization functions and the associated regularization scheme for structural system identification. In particular, 1‐norm regularization functions are investigated to overcome the smearing effect of 2‐norm regularization functions for the identification of discontinuous system parameters of structures. The truncated singular value decomposition is employed to filter out noise‐polluted solution components and to impose the 1‐norm regularization function on SI. The bilinear fitting method is proposed for selecting an optimal truncation number of the truncated singular value decomposition. The validity of the proposed method is demonstrated through the identification of an inclusion in a square plate and damaged members in a two‐span truss. Copyright © 2006 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.1778</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>1-norm regularization function ; 2-norm regularization function ; bilinear fitting method ; Computational techniques ; Decomposition ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Measurement and testing methods ; optimal truncation number ; Optimization ; Physics ; Regularization ; regularization scheme ; Solid mechanics ; Square plates ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; System identification ; Trusses</subject><ispartof>International journal for numerical methods in engineering, 2007-01, Vol.69 (3), p.504-523</ispartof><rights>Copyright © 2006 John Wiley & Sons, Ltd.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3978-952b2cc19dd420f86d4ec4ea89714469e0233e42fadd99ace73cdc1abd563d33</citedby><cites>FETCH-LOGICAL-c3978-952b2cc19dd420f86d4ec4ea89714469e0233e42fadd99ace73cdc1abd563d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.1778$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.1778$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18373837$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Hyun Woo</creatorcontrib><creatorcontrib>Park, Man Woo</creatorcontrib><creatorcontrib>Ahn, Byeong Kyu</creatorcontrib><creatorcontrib>Lee, Hae Sung</creatorcontrib><title>1-Norm-based regularization scheme for system identification of structures with discontinuous system parameters</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>This paper presents a new class of regularization functions and the associated regularization scheme for structural system identification. In particular, 1‐norm regularization functions are investigated to overcome the smearing effect of 2‐norm regularization functions for the identification of discontinuous system parameters of structures. The truncated singular value decomposition is employed to filter out noise‐polluted solution components and to impose the 1‐norm regularization function on SI. The bilinear fitting method is proposed for selecting an optimal truncation number of the truncated singular value decomposition. The validity of the proposed method is demonstrated through the identification of an inclusion in a square plate and damaged members in a two‐span truss. Copyright © 2006 John Wiley & Sons, Ltd.</description><subject>1-norm regularization function</subject><subject>2-norm regularization function</subject><subject>bilinear fitting method</subject><subject>Computational techniques</subject><subject>Decomposition</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Measurement and testing methods</subject><subject>optimal truncation number</subject><subject>Optimization</subject><subject>Physics</subject><subject>Regularization</subject><subject>regularization scheme</subject><subject>Solid mechanics</subject><subject>Square plates</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>System identification</subject><subject>Trusses</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp90E1P3DAQBmALtRLbLRI_IRdQLwF_JHF8RJTSimV76Aq4WV57Am6TePEkottfX692gRMcRj7M41ejl5BDRk8Ypfy07-CESVnvkQmjSuaUU_mBTNJK5aWq2T75hPibUsZKKiYksHweYpcvDYLLItyPrYn-nxl86DO0D9BB1oSY4RoH6DLvoB984-0WhCbDIY52GCNg9uSHh8x5tCGZfgwjPn9bmWg6GCDiZ_KxMS3Cwe6dksW3i8X593z28_LH-dkst0LJOlclX3JrmXKu4LSpK1eALcDUSrKiqBRQLgQUvDHOKWUsSGGdZWbpyko4IabkeBu7iuFxBBx0l-6CtjU9pLs0V6msqigT_PIuZLTmTLFayldqY0CM0OhV9J2J64T0pnuduteb7hM92qUatKZtoumtx1dfCyk2MyX51j35FtZv5un59cUud-d9qvXvizfxj66kkKW-nV_qrzclLa5-3Wkp_gMQOaQ7</recordid><startdate>20070115</startdate><enddate>20070115</enddate><creator>Park, Hyun Woo</creator><creator>Park, Man Woo</creator><creator>Ahn, Byeong Kyu</creator><creator>Lee, Hae Sung</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070115</creationdate><title>1-Norm-based regularization scheme for system identification of structures with discontinuous system parameters</title><author>Park, Hyun Woo ; Park, Man Woo ; Ahn, Byeong Kyu ; Lee, Hae Sung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3978-952b2cc19dd420f86d4ec4ea89714469e0233e42fadd99ace73cdc1abd563d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>1-norm regularization function</topic><topic>2-norm regularization function</topic><topic>bilinear fitting method</topic><topic>Computational techniques</topic><topic>Decomposition</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Measurement and testing methods</topic><topic>optimal truncation number</topic><topic>Optimization</topic><topic>Physics</topic><topic>Regularization</topic><topic>regularization scheme</topic><topic>Solid mechanics</topic><topic>Square plates</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>System identification</topic><topic>Trusses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Hyun Woo</creatorcontrib><creatorcontrib>Park, Man Woo</creatorcontrib><creatorcontrib>Ahn, Byeong Kyu</creatorcontrib><creatorcontrib>Lee, Hae Sung</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Hyun Woo</au><au>Park, Man Woo</au><au>Ahn, Byeong Kyu</au><au>Lee, Hae Sung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>1-Norm-based regularization scheme for system identification of structures with discontinuous system parameters</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2007-01-15</date><risdate>2007</risdate><volume>69</volume><issue>3</issue><spage>504</spage><epage>523</epage><pages>504-523</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>This paper presents a new class of regularization functions and the associated regularization scheme for structural system identification. In particular, 1‐norm regularization functions are investigated to overcome the smearing effect of 2‐norm regularization functions for the identification of discontinuous system parameters of structures. The truncated singular value decomposition is employed to filter out noise‐polluted solution components and to impose the 1‐norm regularization function on SI. The bilinear fitting method is proposed for selecting an optimal truncation number of the truncated singular value decomposition. The validity of the proposed method is demonstrated through the identification of an inclusion in a square plate and damaged members in a two‐span truss. Copyright © 2006 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nme.1778</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2007-01, Vol.69 (3), p.504-523 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_miscellaneous_29100645 |
source | Wiley Online Library |
subjects | 1-norm regularization function 2-norm regularization function bilinear fitting method Computational techniques Decomposition Exact sciences and technology Fundamental areas of phenomenology (including applications) Mathematical analysis Mathematical methods in physics Mathematical models Measurement and testing methods optimal truncation number Optimization Physics Regularization regularization scheme Solid mechanics Square plates Static elasticity (thermoelasticity...) Structural and continuum mechanics System identification Trusses |
title | 1-Norm-based regularization scheme for system identification of structures with discontinuous system parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A54%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=1-Norm-based%20regularization%20scheme%20for%20system%20identification%20of%20structures%20with%20discontinuous%20system%20parameters&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Park,%20Hyun%20Woo&rft.date=2007-01-15&rft.volume=69&rft.issue=3&rft.spage=504&rft.epage=523&rft.pages=504-523&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.1778&rft_dat=%3Cproquest_cross%3E1082191877%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082191877&rft_id=info:pmid/&rfr_iscdi=true |