Axisymmetric Collision Problem for Two Identical Elastic Solids of Revolution

A direct central collision of two identical bodies of revolution is studied. A nonstationary mixed boundary-value problem with an unknown moving boundary is formulated. Its solution is represented by a series in term of Bessel functions. An infinite system of Volterra equations of the second kind fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International applied mechanics 2004-07, Vol.40 (7), p.766-775
Hauptverfasser: Kubenko, V. D., Marchenko, T. A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 775
container_issue 7
container_start_page 766
container_title International applied mechanics
container_volume 40
creator Kubenko, V. D.
Marchenko, T. A.
description A direct central collision of two identical bodies of revolution is studied. A nonstationary mixed boundary-value problem with an unknown moving boundary is formulated. Its solution is represented by a series in term of Bessel functions. An infinite system of Volterra equations of the second kind for the unknown expansion coefficients is derived by satisfying the boundary conditions. The basic characteristics of the collision process are determined depending on the curvature of the frontal surface of the bodies
doi_str_mv 10.1023/B:INAM.0000046220.50305.8e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29099976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29099976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-30c5e35d47617999e1d80d69c1c6a401cda09eb5313cce0ad25edd14e23f8ad33</originalsourceid><addsrcrecordid>eNpFkEtPAjEUhbvQRET_Q-PCHeNtO6-yA4JKgo8orpvS3klqOhTbQeXfO4iJZ3PP4rtn8RFyxSBjwMXNdLx4nDxkcEhecg5ZAQKKrMYTMmBQilEFsjgj5ym994isKjkgD5Nvl_Zti110hs6C9y65sKHPMaw9trQJka6-Al1Y3HTOaE_nXqe-0dfgnU00NPQFP4Pfdf3bBTlttE94-XeH5O12vprdj5ZPd4vZZDkyXPJuJMAUKAqbVyWrpJTIbA22lIaZUufAjNUgcV0IJoxB0JYXaC3LkYum1laIIbk-7m5j-Nhh6lTrkkHv9QbDLikuoZ-tyh4cH0ETQ0oRG7WNrtVxrxiogzU1VQdr6t-a-rWmahQ_JFNkMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29099976</pqid></control><display><type>article</type><title>Axisymmetric Collision Problem for Two Identical Elastic Solids of Revolution</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kubenko, V. D. ; Marchenko, T. A.</creator><creatorcontrib>Kubenko, V. D. ; Marchenko, T. A.</creatorcontrib><description>A direct central collision of two identical bodies of revolution is studied. A nonstationary mixed boundary-value problem with an unknown moving boundary is formulated. Its solution is represented by a series in term of Bessel functions. An infinite system of Volterra equations of the second kind for the unknown expansion coefficients is derived by satisfying the boundary conditions. The basic characteristics of the collision process are determined depending on the curvature of the frontal surface of the bodies</description><identifier>ISSN: 1063-7095</identifier><identifier>DOI: 10.1023/B:INAM.0000046220.50305.8e</identifier><language>eng</language><ispartof>International applied mechanics, 2004-07, Vol.40 (7), p.766-775</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-30c5e35d47617999e1d80d69c1c6a401cda09eb5313cce0ad25edd14e23f8ad33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Kubenko, V. D.</creatorcontrib><creatorcontrib>Marchenko, T. A.</creatorcontrib><title>Axisymmetric Collision Problem for Two Identical Elastic Solids of Revolution</title><title>International applied mechanics</title><description>A direct central collision of two identical bodies of revolution is studied. A nonstationary mixed boundary-value problem with an unknown moving boundary is formulated. Its solution is represented by a series in term of Bessel functions. An infinite system of Volterra equations of the second kind for the unknown expansion coefficients is derived by satisfying the boundary conditions. The basic characteristics of the collision process are determined depending on the curvature of the frontal surface of the bodies</description><issn>1063-7095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpFkEtPAjEUhbvQRET_Q-PCHeNtO6-yA4JKgo8orpvS3klqOhTbQeXfO4iJZ3PP4rtn8RFyxSBjwMXNdLx4nDxkcEhecg5ZAQKKrMYTMmBQilEFsjgj5ym994isKjkgD5Nvl_Zti110hs6C9y65sKHPMaw9trQJka6-Al1Y3HTOaE_nXqe-0dfgnU00NPQFP4Pfdf3bBTlttE94-XeH5O12vprdj5ZPd4vZZDkyXPJuJMAUKAqbVyWrpJTIbA22lIaZUufAjNUgcV0IJoxB0JYXaC3LkYum1laIIbk-7m5j-Nhh6lTrkkHv9QbDLikuoZ-tyh4cH0ETQ0oRG7WNrtVxrxiogzU1VQdr6t-a-rWmahQ_JFNkMA</recordid><startdate>200407</startdate><enddate>200407</enddate><creator>Kubenko, V. D.</creator><creator>Marchenko, T. A.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>200407</creationdate><title>Axisymmetric Collision Problem for Two Identical Elastic Solids of Revolution</title><author>Kubenko, V. D. ; Marchenko, T. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-30c5e35d47617999e1d80d69c1c6a401cda09eb5313cce0ad25edd14e23f8ad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kubenko, V. D.</creatorcontrib><creatorcontrib>Marchenko, T. A.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International applied mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kubenko, V. D.</au><au>Marchenko, T. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Axisymmetric Collision Problem for Two Identical Elastic Solids of Revolution</atitle><jtitle>International applied mechanics</jtitle><date>2004-07</date><risdate>2004</risdate><volume>40</volume><issue>7</issue><spage>766</spage><epage>775</epage><pages>766-775</pages><issn>1063-7095</issn><abstract>A direct central collision of two identical bodies of revolution is studied. A nonstationary mixed boundary-value problem with an unknown moving boundary is formulated. Its solution is represented by a series in term of Bessel functions. An infinite system of Volterra equations of the second kind for the unknown expansion coefficients is derived by satisfying the boundary conditions. The basic characteristics of the collision process are determined depending on the curvature of the frontal surface of the bodies</abstract><doi>10.1023/B:INAM.0000046220.50305.8e</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7095
ispartof International applied mechanics, 2004-07, Vol.40 (7), p.766-775
issn 1063-7095
language eng
recordid cdi_proquest_miscellaneous_29099976
source SpringerLink Journals - AutoHoldings
title Axisymmetric Collision Problem for Two Identical Elastic Solids of Revolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T23%3A35%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Axisymmetric%20Collision%20Problem%20for%20Two%20Identical%20Elastic%20Solids%20of%20Revolution&rft.jtitle=International%20applied%20mechanics&rft.au=Kubenko,%20V.%20D.&rft.date=2004-07&rft.volume=40&rft.issue=7&rft.spage=766&rft.epage=775&rft.pages=766-775&rft.issn=1063-7095&rft_id=info:doi/10.1023/B:INAM.0000046220.50305.8e&rft_dat=%3Cproquest_cross%3E29099976%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29099976&rft_id=info:pmid/&rfr_iscdi=true