Exploring the fitness landscape and the run-time behaviour of an iterated local search algorithm for cost-based abduction
Cost-based abduction (CBA) is an important problem in reasoning under uncertainty, and can be considered a generalization of belief revision. CBA is known to be NP-hard and has been a subject of considerable research over the past decade. In this paper, we investigate the fitness landscape for CBA,...
Gespeichert in:
Veröffentlicht in: | Journal of experimental & theoretical artificial intelligence 2006-09, Vol.18 (3), p.365-386 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 386 |
---|---|
container_issue | 3 |
container_start_page | 365 |
container_title | Journal of experimental & theoretical artificial intelligence |
container_volume | 18 |
creator | Abdelbar, Ashraf M. Gheita, Sarah H. Amer, Heba A. |
description | Cost-based abduction (CBA) is an important problem in reasoning under uncertainty, and can be considered a generalization of belief revision. CBA is known to be NP-hard and has been a subject of considerable research over the past decade. In this paper, we investigate the fitness landscape for CBA, by looking at fitness-distance correlation for local minima and at landscape ruggedness. Our results indicate that stochastic local search techniques would be promising on this problem. We go on to present an iterated local search algorithm based on hill-climbing, tabu search, and simulated annealing. We compare the performance of our algorithm to simulated annealing, and to Santos' integer linear programming method for CBA. |
doi_str_mv | 10.1080/09528130600906365 |
format | Article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_miscellaneous_29099766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29099766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-f4b5729f917ad8ead284c326873607057e4657420175c73208f9a7c408f0cbc23</originalsourceid><addsrcrecordid>eNqFkEFLHTEUhUNR8Kn9Ae6ycjftTTKTTMBNEasFoZsWugt3MokvZWbymmTU9-8b-7oTdHUunPMduIeQCwafGPTwGXTHeyZAAmiQQnYfyIYJyRsBSh-RzYvf1MCvE3Ka828AYB1jG7K_ed5NMYXlgZatoz6UxeVMJ1zGbHHnaD3-OWldmhJmRwe3xccQ10Sjry4NxSUsbqRTtDjR7DDZLcXpobaW7Ux9TNTGXJoBc03hMK62hLick2OPU3Yf_-sZ-fn15sf1XXP__fbb9Zf7xgqlSuPboVNce80Ujr3DkfetFVz2SkhQ0CnXyk61HJjqrBIceq9R2bYq2MFycUYuD727FP-sLhczh2zdVF90cc2Ga9BaSVmD7BC0KeacnDe7FGZMe8PAvIxsXo1cmasDE5b654xPMU2jKbivm_qEiw3ZiLdw9S7-ijLluYi_nwGVUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29099766</pqid></control><display><type>article</type><title>Exploring the fitness landscape and the run-time behaviour of an iterated local search algorithm for cost-based abduction</title><source>EBSCOhost Business Source Complete</source><source>Taylor & Francis Journals Complete</source><creator>Abdelbar, Ashraf M. ; Gheita, Sarah H. ; Amer, Heba A.</creator><creatorcontrib>Abdelbar, Ashraf M. ; Gheita, Sarah H. ; Amer, Heba A.</creatorcontrib><description>Cost-based abduction (CBA) is an important problem in reasoning under uncertainty, and can be considered a generalization of belief revision. CBA is known to be NP-hard and has been a subject of considerable research over the past decade. In this paper, we investigate the fitness landscape for CBA, by looking at fitness-distance correlation for local minima and at landscape ruggedness. Our results indicate that stochastic local search techniques would be promising on this problem. We go on to present an iterated local search algorithm based on hill-climbing, tabu search, and simulated annealing. We compare the performance of our algorithm to simulated annealing, and to Santos' integer linear programming method for CBA.</description><identifier>ISSN: 0952-813X</identifier><identifier>EISSN: 1362-3079</identifier><identifier>DOI: 10.1080/09528130600906365</identifier><language>eng</language><publisher>Taylor & Francis Group</publisher><subject>Belief revision ; Hypothetical reasoning ; Stochastic local search ; Uncertainty</subject><ispartof>Journal of experimental & theoretical artificial intelligence, 2006-09, Vol.18 (3), p.365-386</ispartof><rights>Copyright Taylor & Francis Group, LLC 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-f4b5729f917ad8ead284c326873607057e4657420175c73208f9a7c408f0cbc23</citedby><cites>FETCH-LOGICAL-c377t-f4b5729f917ad8ead284c326873607057e4657420175c73208f9a7c408f0cbc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/09528130600906365$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/09528130600906365$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,59624,60413</link.rule.ids></links><search><creatorcontrib>Abdelbar, Ashraf M.</creatorcontrib><creatorcontrib>Gheita, Sarah H.</creatorcontrib><creatorcontrib>Amer, Heba A.</creatorcontrib><title>Exploring the fitness landscape and the run-time behaviour of an iterated local search algorithm for cost-based abduction</title><title>Journal of experimental & theoretical artificial intelligence</title><description>Cost-based abduction (CBA) is an important problem in reasoning under uncertainty, and can be considered a generalization of belief revision. CBA is known to be NP-hard and has been a subject of considerable research over the past decade. In this paper, we investigate the fitness landscape for CBA, by looking at fitness-distance correlation for local minima and at landscape ruggedness. Our results indicate that stochastic local search techniques would be promising on this problem. We go on to present an iterated local search algorithm based on hill-climbing, tabu search, and simulated annealing. We compare the performance of our algorithm to simulated annealing, and to Santos' integer linear programming method for CBA.</description><subject>Belief revision</subject><subject>Hypothetical reasoning</subject><subject>Stochastic local search</subject><subject>Uncertainty</subject><issn>0952-813X</issn><issn>1362-3079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLHTEUhUNR8Kn9Ae6ycjftTTKTTMBNEasFoZsWugt3MokvZWbymmTU9-8b-7oTdHUunPMduIeQCwafGPTwGXTHeyZAAmiQQnYfyIYJyRsBSh-RzYvf1MCvE3Ka828AYB1jG7K_ed5NMYXlgZatoz6UxeVMJ1zGbHHnaD3-OWldmhJmRwe3xccQ10Sjry4NxSUsbqRTtDjR7DDZLcXpobaW7Ux9TNTGXJoBc03hMK62hLick2OPU3Yf_-sZ-fn15sf1XXP__fbb9Zf7xgqlSuPboVNce80Ujr3DkfetFVz2SkhQ0CnXyk61HJjqrBIceq9R2bYq2MFycUYuD727FP-sLhczh2zdVF90cc2Ga9BaSVmD7BC0KeacnDe7FGZMe8PAvIxsXo1cmasDE5b654xPMU2jKbivm_qEiw3ZiLdw9S7-ijLluYi_nwGVUg</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Abdelbar, Ashraf M.</creator><creator>Gheita, Sarah H.</creator><creator>Amer, Heba A.</creator><general>Taylor & Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060901</creationdate><title>Exploring the fitness landscape and the run-time behaviour of an iterated local search algorithm for cost-based abduction</title><author>Abdelbar, Ashraf M. ; Gheita, Sarah H. ; Amer, Heba A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-f4b5729f917ad8ead284c326873607057e4657420175c73208f9a7c408f0cbc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Belief revision</topic><topic>Hypothetical reasoning</topic><topic>Stochastic local search</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdelbar, Ashraf M.</creatorcontrib><creatorcontrib>Gheita, Sarah H.</creatorcontrib><creatorcontrib>Amer, Heba A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of experimental & theoretical artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdelbar, Ashraf M.</au><au>Gheita, Sarah H.</au><au>Amer, Heba A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the fitness landscape and the run-time behaviour of an iterated local search algorithm for cost-based abduction</atitle><jtitle>Journal of experimental & theoretical artificial intelligence</jtitle><date>2006-09-01</date><risdate>2006</risdate><volume>18</volume><issue>3</issue><spage>365</spage><epage>386</epage><pages>365-386</pages><issn>0952-813X</issn><eissn>1362-3079</eissn><abstract>Cost-based abduction (CBA) is an important problem in reasoning under uncertainty, and can be considered a generalization of belief revision. CBA is known to be NP-hard and has been a subject of considerable research over the past decade. In this paper, we investigate the fitness landscape for CBA, by looking at fitness-distance correlation for local minima and at landscape ruggedness. Our results indicate that stochastic local search techniques would be promising on this problem. We go on to present an iterated local search algorithm based on hill-climbing, tabu search, and simulated annealing. We compare the performance of our algorithm to simulated annealing, and to Santos' integer linear programming method for CBA.</abstract><pub>Taylor & Francis Group</pub><doi>10.1080/09528130600906365</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0952-813X |
ispartof | Journal of experimental & theoretical artificial intelligence, 2006-09, Vol.18 (3), p.365-386 |
issn | 0952-813X 1362-3079 |
language | eng |
recordid | cdi_proquest_miscellaneous_29099766 |
source | EBSCOhost Business Source Complete; Taylor & Francis Journals Complete |
subjects | Belief revision Hypothetical reasoning Stochastic local search Uncertainty |
title | Exploring the fitness landscape and the run-time behaviour of an iterated local search algorithm for cost-based abduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20fitness%20landscape%20and%20the%20run-time%20behaviour%20of%20an%20iterated%20local%20search%20algorithm%20for%20cost-based%20abduction&rft.jtitle=Journal%20of%20experimental%20&%20theoretical%20artificial%20intelligence&rft.au=Abdelbar,%20Ashraf%20M.&rft.date=2006-09-01&rft.volume=18&rft.issue=3&rft.spage=365&rft.epage=386&rft.pages=365-386&rft.issn=0952-813X&rft.eissn=1362-3079&rft_id=info:doi/10.1080/09528130600906365&rft_dat=%3Cproquest_infor%3E29099766%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29099766&rft_id=info:pmid/&rfr_iscdi=true |