Exploring the fitness landscape and the run-time behaviour of an iterated local search algorithm for cost-based abduction

Cost-based abduction (CBA) is an important problem in reasoning under uncertainty, and can be considered a generalization of belief revision. CBA is known to be NP-hard and has been a subject of considerable research over the past decade. In this paper, we investigate the fitness landscape for CBA,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental & theoretical artificial intelligence 2006-09, Vol.18 (3), p.365-386
Hauptverfasser: Abdelbar, Ashraf M., Gheita, Sarah H., Amer, Heba A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 386
container_issue 3
container_start_page 365
container_title Journal of experimental & theoretical artificial intelligence
container_volume 18
creator Abdelbar, Ashraf M.
Gheita, Sarah H.
Amer, Heba A.
description Cost-based abduction (CBA) is an important problem in reasoning under uncertainty, and can be considered a generalization of belief revision. CBA is known to be NP-hard and has been a subject of considerable research over the past decade. In this paper, we investigate the fitness landscape for CBA, by looking at fitness-distance correlation for local minima and at landscape ruggedness. Our results indicate that stochastic local search techniques would be promising on this problem. We go on to present an iterated local search algorithm based on hill-climbing, tabu search, and simulated annealing. We compare the performance of our algorithm to simulated annealing, and to Santos' integer linear programming method for CBA.
doi_str_mv 10.1080/09528130600906365
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_miscellaneous_29099766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29099766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-f4b5729f917ad8ead284c326873607057e4657420175c73208f9a7c408f0cbc23</originalsourceid><addsrcrecordid>eNqFkEFLHTEUhUNR8Kn9Ae6ycjftTTKTTMBNEasFoZsWugt3MokvZWbymmTU9-8b-7oTdHUunPMduIeQCwafGPTwGXTHeyZAAmiQQnYfyIYJyRsBSh-RzYvf1MCvE3Ka828AYB1jG7K_ed5NMYXlgZatoz6UxeVMJ1zGbHHnaD3-OWldmhJmRwe3xccQ10Sjry4NxSUsbqRTtDjR7DDZLcXpobaW7Ux9TNTGXJoBc03hMK62hLick2OPU3Yf_-sZ-fn15sf1XXP__fbb9Zf7xgqlSuPboVNce80Ujr3DkfetFVz2SkhQ0CnXyk61HJjqrBIceq9R2bYq2MFycUYuD727FP-sLhczh2zdVF90cc2Ga9BaSVmD7BC0KeacnDe7FGZMe8PAvIxsXo1cmasDE5b654xPMU2jKbivm_qEiw3ZiLdw9S7-ijLluYi_nwGVUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29099766</pqid></control><display><type>article</type><title>Exploring the fitness landscape and the run-time behaviour of an iterated local search algorithm for cost-based abduction</title><source>EBSCOhost Business Source Complete</source><source>Taylor &amp; Francis Journals Complete</source><creator>Abdelbar, Ashraf M. ; Gheita, Sarah H. ; Amer, Heba A.</creator><creatorcontrib>Abdelbar, Ashraf M. ; Gheita, Sarah H. ; Amer, Heba A.</creatorcontrib><description>Cost-based abduction (CBA) is an important problem in reasoning under uncertainty, and can be considered a generalization of belief revision. CBA is known to be NP-hard and has been a subject of considerable research over the past decade. In this paper, we investigate the fitness landscape for CBA, by looking at fitness-distance correlation for local minima and at landscape ruggedness. Our results indicate that stochastic local search techniques would be promising on this problem. We go on to present an iterated local search algorithm based on hill-climbing, tabu search, and simulated annealing. We compare the performance of our algorithm to simulated annealing, and to Santos' integer linear programming method for CBA.</description><identifier>ISSN: 0952-813X</identifier><identifier>EISSN: 1362-3079</identifier><identifier>DOI: 10.1080/09528130600906365</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><subject>Belief revision ; Hypothetical reasoning ; Stochastic local search ; Uncertainty</subject><ispartof>Journal of experimental &amp; theoretical artificial intelligence, 2006-09, Vol.18 (3), p.365-386</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-f4b5729f917ad8ead284c326873607057e4657420175c73208f9a7c408f0cbc23</citedby><cites>FETCH-LOGICAL-c377t-f4b5729f917ad8ead284c326873607057e4657420175c73208f9a7c408f0cbc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/09528130600906365$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/09528130600906365$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,59624,60413</link.rule.ids></links><search><creatorcontrib>Abdelbar, Ashraf M.</creatorcontrib><creatorcontrib>Gheita, Sarah H.</creatorcontrib><creatorcontrib>Amer, Heba A.</creatorcontrib><title>Exploring the fitness landscape and the run-time behaviour of an iterated local search algorithm for cost-based abduction</title><title>Journal of experimental &amp; theoretical artificial intelligence</title><description>Cost-based abduction (CBA) is an important problem in reasoning under uncertainty, and can be considered a generalization of belief revision. CBA is known to be NP-hard and has been a subject of considerable research over the past decade. In this paper, we investigate the fitness landscape for CBA, by looking at fitness-distance correlation for local minima and at landscape ruggedness. Our results indicate that stochastic local search techniques would be promising on this problem. We go on to present an iterated local search algorithm based on hill-climbing, tabu search, and simulated annealing. We compare the performance of our algorithm to simulated annealing, and to Santos' integer linear programming method for CBA.</description><subject>Belief revision</subject><subject>Hypothetical reasoning</subject><subject>Stochastic local search</subject><subject>Uncertainty</subject><issn>0952-813X</issn><issn>1362-3079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLHTEUhUNR8Kn9Ae6ycjftTTKTTMBNEasFoZsWugt3MokvZWbymmTU9-8b-7oTdHUunPMduIeQCwafGPTwGXTHeyZAAmiQQnYfyIYJyRsBSh-RzYvf1MCvE3Ka828AYB1jG7K_ed5NMYXlgZatoz6UxeVMJ1zGbHHnaD3-OWldmhJmRwe3xccQ10Sjry4NxSUsbqRTtDjR7DDZLcXpobaW7Ux9TNTGXJoBc03hMK62hLick2OPU3Yf_-sZ-fn15sf1XXP__fbb9Zf7xgqlSuPboVNce80Ujr3DkfetFVz2SkhQ0CnXyk61HJjqrBIceq9R2bYq2MFycUYuD727FP-sLhczh2zdVF90cc2Ga9BaSVmD7BC0KeacnDe7FGZMe8PAvIxsXo1cmasDE5b654xPMU2jKbivm_qEiw3ZiLdw9S7-ijLluYi_nwGVUg</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Abdelbar, Ashraf M.</creator><creator>Gheita, Sarah H.</creator><creator>Amer, Heba A.</creator><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060901</creationdate><title>Exploring the fitness landscape and the run-time behaviour of an iterated local search algorithm for cost-based abduction</title><author>Abdelbar, Ashraf M. ; Gheita, Sarah H. ; Amer, Heba A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-f4b5729f917ad8ead284c326873607057e4657420175c73208f9a7c408f0cbc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Belief revision</topic><topic>Hypothetical reasoning</topic><topic>Stochastic local search</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdelbar, Ashraf M.</creatorcontrib><creatorcontrib>Gheita, Sarah H.</creatorcontrib><creatorcontrib>Amer, Heba A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of experimental &amp; theoretical artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdelbar, Ashraf M.</au><au>Gheita, Sarah H.</au><au>Amer, Heba A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the fitness landscape and the run-time behaviour of an iterated local search algorithm for cost-based abduction</atitle><jtitle>Journal of experimental &amp; theoretical artificial intelligence</jtitle><date>2006-09-01</date><risdate>2006</risdate><volume>18</volume><issue>3</issue><spage>365</spage><epage>386</epage><pages>365-386</pages><issn>0952-813X</issn><eissn>1362-3079</eissn><abstract>Cost-based abduction (CBA) is an important problem in reasoning under uncertainty, and can be considered a generalization of belief revision. CBA is known to be NP-hard and has been a subject of considerable research over the past decade. In this paper, we investigate the fitness landscape for CBA, by looking at fitness-distance correlation for local minima and at landscape ruggedness. Our results indicate that stochastic local search techniques would be promising on this problem. We go on to present an iterated local search algorithm based on hill-climbing, tabu search, and simulated annealing. We compare the performance of our algorithm to simulated annealing, and to Santos' integer linear programming method for CBA.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/09528130600906365</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0952-813X
ispartof Journal of experimental & theoretical artificial intelligence, 2006-09, Vol.18 (3), p.365-386
issn 0952-813X
1362-3079
language eng
recordid cdi_proquest_miscellaneous_29099766
source EBSCOhost Business Source Complete; Taylor & Francis Journals Complete
subjects Belief revision
Hypothetical reasoning
Stochastic local search
Uncertainty
title Exploring the fitness landscape and the run-time behaviour of an iterated local search algorithm for cost-based abduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20fitness%20landscape%20and%20the%20run-time%20behaviour%20of%20an%20iterated%20local%20search%20algorithm%20for%20cost-based%20abduction&rft.jtitle=Journal%20of%20experimental%20&%20theoretical%20artificial%20intelligence&rft.au=Abdelbar,%20Ashraf%20M.&rft.date=2006-09-01&rft.volume=18&rft.issue=3&rft.spage=365&rft.epage=386&rft.pages=365-386&rft.issn=0952-813X&rft.eissn=1362-3079&rft_id=info:doi/10.1080/09528130600906365&rft_dat=%3Cproquest_infor%3E29099766%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29099766&rft_id=info:pmid/&rfr_iscdi=true