Bifurcation analysis of a two-degree-of-freedom aeroelastic system with freeplay structural nonlinearity by a perturbation-incremental method

A perturbation-incremental (PI) method is presented for the computation, continuation and bifurcation analysis of limit cycle oscillations (LCO) of a two-degree-of-freedom aeroelastic system containing a freeplay structural nonlinearity. Both stable and unstable LCOs can be calculated to any desired...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2007-01, Vol.299 (3), p.520-539
Hauptverfasser: Chung, K.W., Chan, C.L., Lee, B.H.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 539
container_issue 3
container_start_page 520
container_title Journal of sound and vibration
container_volume 299
creator Chung, K.W.
Chan, C.L.
Lee, B.H.K.
description A perturbation-incremental (PI) method is presented for the computation, continuation and bifurcation analysis of limit cycle oscillations (LCO) of a two-degree-of-freedom aeroelastic system containing a freeplay structural nonlinearity. Both stable and unstable LCOs can be calculated to any desired degree of accuracy and their stabilities are determined by the Floquet theory. Thus, the present method is capable of detecting complex aeroelastic responses such as periodic motion with harmonics, period-doubling (PD), saddle-node bifurcation, Neimark–Sacker bifurcation and the coexistence of limit cycles. Emanating branch from a PD bifurcation can be constructed. This method can also be applied to any piecewise linear systems.
doi_str_mv 10.1016/j.jsv.2006.06.059
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29098111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X06005955</els_id><sourcerecordid>29098111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-3988f20a3411e461e934ecfe79b3cfea8ed550277e39fccbd967191eaaf39cb93</originalsourceid><addsrcrecordid>eNqFkctqHDEQRUWIIRM7H5CdNgnZ9ESPfomsEpMXGLxxIDtRrS7FGrqliaS26Y_wP0edMWTnwIW7qFO3oC4hrznbc8bb94f9Id3tBWPtflOjnpEdZ6qp-qbtn5MdY0JUdct-viAvUzowxlQt6x15-OTsEg1kFzwFD9OaXKLBUqD5PlQj_oqIVbCVLT6GmQLGgBOk7AxNa8o403uXb-k2P06w0pTjYvISYaI--Ml5hOjySoe1ZB4xltHw91zlvIk4o88FnTHfhvGCnFmYEr569HPy48vnm8tv1dX11--XH68qU4s6V1L1vRUMZM051i1HJWs0Fjs1yGLQ49g0THQdSmWNGUbVdlxxBLBSmUHJc_L2lHuM4feCKevZJYPTBB7DkrRQTPWc8wK-exLkXSs4rzul_o-yXnDF2k4UlJ9QE0NKEa0-RjdDXAuktzr1QZc69Van3tRs8W8e4yEZmGwEb1z6t9hLJftu4z6cOCz_u3MYdTIOvcHRRTRZj8E9ceUPKgC5QQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082190672</pqid></control><display><type>article</type><title>Bifurcation analysis of a two-degree-of-freedom aeroelastic system with freeplay structural nonlinearity by a perturbation-incremental method</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Chung, K.W. ; Chan, C.L. ; Lee, B.H.K.</creator><creatorcontrib>Chung, K.W. ; Chan, C.L. ; Lee, B.H.K.</creatorcontrib><description>A perturbation-incremental (PI) method is presented for the computation, continuation and bifurcation analysis of limit cycle oscillations (LCO) of a two-degree-of-freedom aeroelastic system containing a freeplay structural nonlinearity. Both stable and unstable LCOs can be calculated to any desired degree of accuracy and their stabilities are determined by the Floquet theory. Thus, the present method is capable of detecting complex aeroelastic responses such as periodic motion with harmonics, period-doubling (PD), saddle-node bifurcation, Neimark–Sacker bifurcation and the coexistence of limit cycles. Emanating branch from a PD bifurcation can be constructed. This method can also be applied to any piecewise linear systems.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2006.06.059</identifier><identifier>CODEN: JSVIAG</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Aeroelasticity ; Bifurcations ; Emission ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Linear systems ; Mathematical analysis ; Nonlinearity ; Physics ; Polyimide resins ; Solid mechanics ; Structural and continuum mechanics ; Vibration ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Journal of sound and vibration, 2007-01, Vol.299 (3), p.520-539</ispartof><rights>2006 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-3988f20a3411e461e934ecfe79b3cfea8ed550277e39fccbd967191eaaf39cb93</citedby><cites>FETCH-LOGICAL-c424t-3988f20a3411e461e934ecfe79b3cfea8ed550277e39fccbd967191eaaf39cb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022460X06005955$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18393879$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chung, K.W.</creatorcontrib><creatorcontrib>Chan, C.L.</creatorcontrib><creatorcontrib>Lee, B.H.K.</creatorcontrib><title>Bifurcation analysis of a two-degree-of-freedom aeroelastic system with freeplay structural nonlinearity by a perturbation-incremental method</title><title>Journal of sound and vibration</title><description>A perturbation-incremental (PI) method is presented for the computation, continuation and bifurcation analysis of limit cycle oscillations (LCO) of a two-degree-of-freedom aeroelastic system containing a freeplay structural nonlinearity. Both stable and unstable LCOs can be calculated to any desired degree of accuracy and their stabilities are determined by the Floquet theory. Thus, the present method is capable of detecting complex aeroelastic responses such as periodic motion with harmonics, period-doubling (PD), saddle-node bifurcation, Neimark–Sacker bifurcation and the coexistence of limit cycles. Emanating branch from a PD bifurcation can be constructed. This method can also be applied to any piecewise linear systems.</description><subject>Aeroelasticity</subject><subject>Bifurcations</subject><subject>Emission</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Polyimide resins</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkctqHDEQRUWIIRM7H5CdNgnZ9ESPfomsEpMXGLxxIDtRrS7FGrqliaS26Y_wP0edMWTnwIW7qFO3oC4hrznbc8bb94f9Id3tBWPtflOjnpEdZ6qp-qbtn5MdY0JUdct-viAvUzowxlQt6x15-OTsEg1kFzwFD9OaXKLBUqD5PlQj_oqIVbCVLT6GmQLGgBOk7AxNa8o403uXb-k2P06w0pTjYvISYaI--Ml5hOjySoe1ZB4xltHw91zlvIk4o88FnTHfhvGCnFmYEr569HPy48vnm8tv1dX11--XH68qU4s6V1L1vRUMZM051i1HJWs0Fjs1yGLQ49g0THQdSmWNGUbVdlxxBLBSmUHJc_L2lHuM4feCKevZJYPTBB7DkrRQTPWc8wK-exLkXSs4rzul_o-yXnDF2k4UlJ9QE0NKEa0-RjdDXAuktzr1QZc69Van3tRs8W8e4yEZmGwEb1z6t9hLJftu4z6cOCz_u3MYdTIOvcHRRTRZj8E9ceUPKgC5QQ</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Chung, K.W.</creator><creator>Chan, C.L.</creator><creator>Lee, B.H.K.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20070101</creationdate><title>Bifurcation analysis of a two-degree-of-freedom aeroelastic system with freeplay structural nonlinearity by a perturbation-incremental method</title><author>Chung, K.W. ; Chan, C.L. ; Lee, B.H.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-3988f20a3411e461e934ecfe79b3cfea8ed550277e39fccbd967191eaaf39cb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aeroelasticity</topic><topic>Bifurcations</topic><topic>Emission</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Polyimide resins</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chung, K.W.</creatorcontrib><creatorcontrib>Chan, C.L.</creatorcontrib><creatorcontrib>Lee, B.H.K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chung, K.W.</au><au>Chan, C.L.</au><au>Lee, B.H.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifurcation analysis of a two-degree-of-freedom aeroelastic system with freeplay structural nonlinearity by a perturbation-incremental method</atitle><jtitle>Journal of sound and vibration</jtitle><date>2007-01-01</date><risdate>2007</risdate><volume>299</volume><issue>3</issue><spage>520</spage><epage>539</epage><pages>520-539</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><coden>JSVIAG</coden><abstract>A perturbation-incremental (PI) method is presented for the computation, continuation and bifurcation analysis of limit cycle oscillations (LCO) of a two-degree-of-freedom aeroelastic system containing a freeplay structural nonlinearity. Both stable and unstable LCOs can be calculated to any desired degree of accuracy and their stabilities are determined by the Floquet theory. Thus, the present method is capable of detecting complex aeroelastic responses such as periodic motion with harmonics, period-doubling (PD), saddle-node bifurcation, Neimark–Sacker bifurcation and the coexistence of limit cycles. Emanating branch from a PD bifurcation can be constructed. This method can also be applied to any piecewise linear systems.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2006.06.059</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2007-01, Vol.299 (3), p.520-539
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_miscellaneous_29098111
source Elsevier ScienceDirect Journals Complete
subjects Aeroelasticity
Bifurcations
Emission
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Linear systems
Mathematical analysis
Nonlinearity
Physics
Polyimide resins
Solid mechanics
Structural and continuum mechanics
Vibration
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title Bifurcation analysis of a two-degree-of-freedom aeroelastic system with freeplay structural nonlinearity by a perturbation-incremental method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T09%3A02%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifurcation%20analysis%20of%20a%20two-degree-of-freedom%20aeroelastic%20system%20with%20freeplay%20structural%20nonlinearity%20by%20a%20perturbation-incremental%20method&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Chung,%20K.W.&rft.date=2007-01-01&rft.volume=299&rft.issue=3&rft.spage=520&rft.epage=539&rft.pages=520-539&rft.issn=0022-460X&rft.eissn=1095-8568&rft.coden=JSVIAG&rft_id=info:doi/10.1016/j.jsv.2006.06.059&rft_dat=%3Cproquest_cross%3E29098111%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082190672&rft_id=info:pmid/&rft_els_id=S0022460X06005955&rfr_iscdi=true